
CBench: Analyzing Compute Performance for Modern NVIDIA and AMD GPUs

Varun Sampath∗

University of Pennsylvania

Abstract

General purpose GPU computation is a fast growing field with a
variety of applications. For maximum performance, though, map-
ping high-level parallel algorithms to vendor hardware requires a
solid grasp of both the algorithm’s computational requirements and
the microarchitectural limitations of the GPU. This work aims to
explore the performance of high and low arithmetic intensity work-
loads on the latest NVIDIA and AMD GPU hardware, codenamed
Fermi and Barts, respectively. A summed area table generator and
a Black-Scholes option pricer were used as benchmarks to analyze
performance for compute- and bandwidth-bound algorithms. It was
found that the AMD Barts GPU provided a 50% performance boost
on the Black-Scholes compute-bound workload, whereas Fermi ex-
celled at the more memory-bound summed area table computation.

CR Categories: B.8.2 [Hardware]: Performance and Reliability—
Performance Analysis and Design Aids;

Keywords: CUDA, OpenCL, benchmark, NVIDIA, AMD, Fermi,
Barts

Links: DL PDF WEB VIDEO DATA CODE

1 Overview

Using the GPU as a coprocessor is becoming an increasingly com-
mon practice for accelerating data-parallel computations. It can be
said that the GPU manufacturer NVIDIA has been spearheading
such efforts with their CUDA architecture. The release of OpenCL
as a platform-agnostic alternative, though, opens the market to other
vendors. In this paper, the performance of NVIDIA and AMD
hardware along with CUDA and OpenCL software is investigated.
Two benchmarks are used to investigate both compute- bound and
memory-bound performance. The specific hardware analyzed is
NVIDIA’s latest high-performance architecture, Fermi, and AMD’s
latest prosumer architecture, Barts. Section 2 describes the archi-
tecture of these two GPU families in comparison to older GPU
architectures like the NVIDIA G80. Section 3 discusses related
benchmarking work. Section 4 describes the benchmarks used for
evaluation. Section 5 provides charts for the benchmarking data
collected, and Section 6 is an analysis of that data. Section 7 de-
scribes possible future work.

∗e-mail: vsampath@seas.upenn.edu

2 GPU Architectures

Both the Fermi and Barts GPU architectures follow the SIMT (sin-
gle instruction, multiple thread) model of execution. A group of
threads/work-items execute the same instruction at the same time
on different data. The GPU scheduler tries to schedule as many of
these groups as it can to saturate the hardware and hide stalls. The
following is a discussion of the Fermi and Barts architectures in the
scope of this model.

2.1 Fermi Architecture

2.1.1 Fermi Compute Architecture

Fermi’s compute architecture is a significant enhancement from
previous NVIDIA GPU generations. At the highest level, a Fermi
GPU contains 14 multiprocessors, or compute units. Each of these
contains 32 CUDA cores. There are also 16 load/store units in the
multiprocessor.

Fermi schedules two warps (a SIMT unit of 32 threads/work-items)
concurrently for each multiprocessor. Each warp can either occupy
16 CUDA cores, the 16 load/store units, or the 4 transcendental
units. This is in contrast to previous NVIDIA architectures where a
multiprocessor only executed one warp at a time [NVI ].

2.1.2 Fermi Memory Architecture

Unlike prior generations of NVIDIA GPU architectures, Fermi pro-
vides a cache hierarchy for compute applications. Each multipro-
cessor contains a 64KB block partitioned between L1 cache and
shared memory. The split must be 16KB/48KB, but the application
developer can choose whether the L1 cache or the shared memory
takes the larger portion.

All of the multiprocessors on the GPU share a 768KB L2 cache. All
accesses to off-chip memory go through this L2 cache. By default,
accesses to off-chip memory also go through the L1 cache. Given
the fact that accesses all go through the caches, memory coalescing
optimizations are now also a function of the cache. A cache line
is 128B, so when a thread misses the cache on a memory read, a
full 128B data chunk is pulled from off-chip memory. This implies
that restrictions present in the G80 requiring consecutive reads in a
half-warp are no longer necessary; all reads within this 128B line
will now hit the cache instead of off-chip memory. Memory ad-
dresses are also hashed in Fermi, so partition camping is no longer
an issue [2010].

Shared memory has also received upgrades in flexibility over previ-
ous generation architectures. Shared memory is now split up into 32
banks instead of 16. Also unlike previous generation architectures,
if multiple threads access the same 32-bit word, that word can be
multicast without any performance penalty. The G80 only supports
broadcasting when all threads access the same 32-bit word [2010a].

2.2 Barts Architecture

2.2.1 Barts Compute Architecture

The Barts architecture is a derivative of the Cypress architecture
behind the AMD Radeon HD 58xx series of GPUs [2010]. At the

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf
http://vsampath.blogspot.com
http://www.seas.upenn.edu/~vsampath/cis565/final.wmv
http://code.google.com/p/cbench-cis565s11/source/browse/#svn%2Ftrunk%2Fdata
http://code.google.com/p/cbench-cis565s11/


highest level, the design hierarchy is similar to Fermi and prior
GPUs from both vendors. The GPU consists of compute units,
and each compute unit contains many stream cores. Barts contains
14 compute units, with each compute unit containing 16 stream
cores [2011].

AMD GPU architectures are different from NVIDIA architectures
in that they try to extract instruction-level parallelism (ILP) along-
side thread-level parallelism through a very-long-instruction-word
(VLIW) architecture. Each stream core in Barts contains 5 scalar
processing units. 4 of the 5 units (labeled x, y, z, and w) can per-
form one scalar floating-point operation per clock, while the fifth
unit (t) can additionally perform transcendental operations.

The basic SIMT scheduling block is handled at the stream core
level, though. This is called a wavefront in AMD terminology, and
is (nearly) analogous to the NVIDIA warp. A wavefront consists of
64 work-items and one instruction clause (explained later). Since
there are 16 stream cores in a compute unit, four work-items are
executed on each stream core. One instruction is pipelined from
each of the four work-items in the stream core, so that any memory
access latency can be hidden by the three other execution cycles.

Scheduling of wavefronts is done by the dispatch processor for all
compute units. The instruction stream for the kernel is broken
up into a series of clauses, depending on the operation. For in-
stance, there are ALU clauses for computation and fetch clauses
for memory access. The wavefront scheduled changes at every
clause change. Each instruction in a clause is a 5-wide VLIW bun-
dle [2011].

2.2.2 Barts Memory Architecture

The Barts memory hierarchy is similar to older NVIDIA GPUs
since it must maintain OpenCL compliance. The shared memory
(called local data store, or LDS) has 32 32-bit wide banks that can
succumb to the same bank conflict problems as NVIDIA hardware.
An additional problem for AMD hardware, though, is that each
stream core can make only 2 LDS accesses per cycle, whereas there
are 5 ALUs that need data. AMD recommends handling this inade-
quacy by using more of the register file, since it is much larger and
provides much higher bandwidth.

Accesses to global memory can suffer from either channel or bank
conflicts. There are 8 memory controllers with 256-byte channels
that access banks of even larger width. Accesses should also be
coalesced, although the performance impact of weakly-coalesced
writes does not impact performance terribly because of communi-
cation with the memory controller.

Barts and Cypress both have read-only L1 and L2 caches. The lat-
est SDK lets read-only OpenCL buffers as well as OpenCL images
(i.e. textures) use the caches. The L1 is 8KB and is present for
each compute unit, while the L2 is built into each memory con-
troller. With eight memory controllers, there is 512KB of L2 cache
available [2011].

3 Related Work

Danalis et al. developed “The Scalable HeterOgeneous Comput-
ing (SHOC) Benchmark Suite.” They analyzed the performance of
NVIDIA GT200 and G80 class GPUs, ATI Evergreen class GPUs,
and Intel and AMD multicore CPUs for a variety of compute-
and bandwidth-constrained kernels using both CUDA and OpenCL.
They found the Radeon HD 5870 to be a high performer, and saw
OpenCL performance trail CUDA performance on NVIDIA hard-
ware [2010].

Du et al. evaluated and tuned OpenCL kernels for level 3 BLAS
routines. They benchmarked their results on the Fermi Tesla C2050
and the Radeon HD 5870. They found the ATI hardware to be
much faster at their matrix multiplication task, and were able to
nearly match an OpenCL implementation in speed with CUDA on
Fermi [2010].

4 Approach

Two benchmarks applications were developed for both CUDA and
OpenCL. The CUDA version was benchmarked on the NVIDIA
Fermi GPU, while the OpenCL version was benchmarked on both
the NVIDIA Fermi and the AMD Barts GPU. The specific Fermi
GPU used was the Tesla C2070. The specific Barts GPU used
was the Radeon HD 6870. The benchmark programs were com-
piled using Visual Studio 2008 and the Windows High-Performance
Counter was used for timing by the CPU. NVIDIA binaries were
compiled for compute model 2.0. The following subsections de-
scribe the two kernels being benchmarked.

4.1 Summed Area Tables

A benchmark program was implemented to calculate summed area
tables (SAT) of float4 matrices on the GPU using a scan kernel and
a transpose kernel. The scan kernel performed an inclusive scan of
all rows of the input matrix in parallel. The scan algorithm used was
the naive parallel scan, which requires O(nlogn) additions [2007].

The scan kernel makes use of shared/local memory for coalescing
reads and writes. The transpose kernel is a simple naive transpose,
though, which does not coalesce writes.

To calculate a summed area table, the rows of the matrix were
first scanned. The matrix was then transposed and the rows were
scanned again. The matrix was transposed one more time to ob-
tain the final result. The transposes were performed to avoid non-
coalesced scans across columns of the input matrix and to provide
additional performance data. Both inclusive scan and transpose op-
erations are very bandwidth-constrained, so this program tests low
arithmetic intensity performance.

4.2 Black-Scholes

The Black-Scholes model is used for the pricing of put and call
European-style options. The closed-form solution for the model
can be used to price these options on the GPU [2007]. Each pric-
ing requires many floating-point calculations, and no pricings are
dependent on another. This results in an embarrassingly parallel
benchmark designed to test high arithmetic intensity performance.
The CUDA and OpenCL kernels for this program were provided by
the NVIDIA GPU Computing SDK [2007].

5 Results

5.1 Summed Area Tables

Figure 1 shows Fermi and Barts results for the SAT benchmark.
Figure 2 shows the performance delta between the CUDA and
OpenCL SAT kernels executing on the Fermi GPU.

5.2 Black-Scholes

Figure 3 shows Fermi and Barts results for the Black-Scholes
benchmark. Figure 4 shows the performance delta between the
CUDA and OpenCL kernels executing on the Fermi GPU.



Figure 1: SAT OpenCL Performance with work-group size of 256

Figure 2: SAT OpenCL and CUDA Performance with work-group
size of 256

6 Analysis

6.1 Black-Scholes Performance

The results of the comparison between Barts and Fermi for this
program validate that this benchmark is compute-bound. The Tesla
C2070 has higher theoretical bandwidth to off-chip memory (144
GB/s [2010b] vs 134 GB/s [2011]) and also has larger L1 and L2
caches. All reads and writes in this kernel are also coalesced. The
performance of the Fermi card is still around 50% slower than the
Barts card. We can analyze this gap by looking at the generated
assembly and the compute capabilities of each card.

6.1.1 Black-Scholes Barts Performance

AMD provides the APP KernelAnalyzer to generate the AMD In-
termediate Language (IL) representation of the Black-Scholes ker-
nel. The output shows that there are 92 ALU VLIW5 instructions,
compared to only 6 fetch and 2 write instructions. The kernel
uses 12 registers, and since each compute unit has 16,384 avail-
able, Barts is bottlenecked to 1365 threads per compute unit, or 20
wavefronts (5 work-groups). Since there are so few memory access
instructions (with the reads being cached too) , the latency of the
memory accesses can be effectively hidden by these wavefronts.

Barts has a theoretical compute performance of 2016
GFLOPS [2011]. To harness this compute power, though,
the 5 scalar processing units of each stream core need to be
saturated with independent floating point instructions. The AMD
IL shows that for the majority of ALU VLIW5 instructions, 4 to
5 of the scalar processing units are executing in parallel. If we
conservatively say that compute unit ALU utilization is at 70%,

Figure 3: Black-Scholes OpenCL Performance with work-group
size of 256 and processing of 8 million options

Figure 4: Black-Scholes OpenCL and CUDA Performance with
work-group size of 256 and processing of 8 million options

then the extrapolated performance of 1411 GFLOPS is higher than
Fermi’s peak theoretical single precision performance [2010b].
The performance of this kernel shows that AMD hardware can
perform extremely well with high numbers of independent single
precision operations.

6.1.2 Black-Scholes Fermi Performance

We can use the PTX output of the NVIDIA OpenCL compiler and
NVCC to understand the performance of the OpenCL and CUDA
implementations. The PTX output for the Black-Scholes OpenCL
kernel shows that there are two loads and 3 stores per loop iteration
versus many more scalar floating point operations. Assembling via
PTXAS shows that the kernel uses 30 registers. Since 32,768 reg-
isters are available per multiprocessor on Fermi, 4 work-groups can
occupy a multiprocessor, or 32 warps. With the high amount of
compute instructions, memory latency can also be hidden in this
case.

Ideally, because the application is compute-bound, we should see
near the peak compute throughput during execution. There are
some reasons why we do not see these results, though. One is
the use of special functions in the kernel, such as SQRT and LOG.
There are only 4 units in the Fermi multiprocessor for handling
these instructions (instead of 16 CUDA cores), so they take 4 times
as long to execute. The advantage of the Fermi architecture is the
dual warp scheduling approach that does not let the CUDA cores
sit idly while the special functions are executing. In any case, the
drop from peak theoretical performance for this reason plus the
overhead of other instructions and scheduling can justify the Fermi
performance recorded. The factor of two difference in theoretical



performance between Fermi and Barts also helps in justifying the
real-world factor of two difference presented here.

The comparison between CUDA and OpenCL for this application
gives a surprising result, considering the several more years of ma-
turity that CUDA has. The PTX output of NVCC and the OpenCL
LLVM compiler is substantially different, so it is difficult to sub-
stantiate the performance difference with assembly analysis. Even
more surprising is that there are far more instructions generated
by the OpenCL compiler than NVCC. One possible reason for the
performance discrepancy is the ordering of instructions, especially
loads for prefetching purposes. The NVIDIA Compute Visual Pro-
filer also confirms these results that the OpenCL implementation
is faster. Understanding in more detail why may be a subject for
future work.

6.2 Summed Area Table Performance

This benchmark has several variables and components, such as
shared/local memory usage in the scan kernel, the uncoalesced
writes in the transpose kernel, and the caching performed by both
GPUs. The following sections will attempt to justify the execution
times witnessed.

6.2.1 SAT Barts Performance

The Barts computations unfortunately did not scale to 4096x4096
due to runtime execution errors. Despite the limited data, we can
still attempt to draw some conclusions. With two scan and two
transpose calls, the 2048x2048 problem yields a total bandwidth
of 26.7 GB/s. This is far lower than the peak theoretical band-
width for a variety of reasons. For the scan kernel, reads offset by
a stride are subject to channel or bank conflicts, especially since
the problem sizes are all multiples of the channel width. Accesses
to local/shared memory are also subject to bank conflicts because
of the doubled indices used. Lastly, writes in the transpose kernel
are uncoalesced. We have also ignored the effects of caching be-
cause of the small size; the 8KB L1 cache cannot supply enough
data for reads of a 2048x2048 float4 matrix. The combination of
these bottlenecks and the O(nlogn) scaling of scan can explain the
execution times found in testing.

6.3 SAT Fermi Performance

Using the same 2048x2048 problem, Fermi obtains a total band-
width of 59.5 GB/s. There are a few reasons for this large per-
formance delta between Fermi and Barts in this example. One is
Fermi’s hashing of memory addresses through the use of virtual
memory. This hashing eliminates off-chip memory bank conflicts,
which is a serious concern for the strided access patterns in the
naive scan.

Another improvement over Barts is the distribution of shared/local
memory. While they both have 32 32-bit wide banks, Fermi only
needs parallelism amongst 32 threads versus Barts’ 64 threads. In
the scan example, where shared/local memory is indexed by 2 times
the thread index, Fermi has 50% less bank conflicts.

A feature that may not aid performance is Fermi’s cache hierarchy.
Due to the use of different input and output buffers, the L1 and L2
caches should always miss. Data from the NVIDIA Visual Profiler
confirms this.

The comparison between CUDA and OpenCL for this application
shows CUDA being slightly faster than OpenCL. Understanding
the differences between the PTX generated requires more knowl-
edge of the instruction set. From this and the Black-Scholes CUDA
and OpenCL comparison it shows that the performance between

implementations varies substantially based on what compiler opti-
mizations are used, so a generalized statement about CUDA versus
OpenCL performance cannot be made.

7 Future Work

There are many avenues for future work. One is upgrading the SAT
benchmark to use more efficient algorithms like those provided in
vendor libraries. This will give a more real-world indication of the
performance of the system.

Another aspect to research is NVIDIA PTX and AMD IL optimiza-
tions. By understanding the assembly generated by CUDA and
OpenCL compilers, much more information can be extracted about
why certain performance deltas exist.

Finally, more benchmarks that are not at the extremes of bandwidth
or compute constraints can be implemented to give developers more
relevant information on the performance of their own systems.

Acknowledgements

Special thanks to Aleksandar Dimitrijevic for providing the AMD
Radeon HD 6870 for testing, and to Patrick Cozzi and Jon McCaf-
frey for their advice and help.

References

ADVANCED MICRO DEVICES, INC. 2011. AMD Accelerated Par-
allel Processing OpenCL, Apr.

DANALIS, A., MARIN, G., MCCURDY, C., MEREDITH, J. S.,
ROTH, P. C., SPAFFORD, K., TIPPARAJU, V., AND VETTER,
J. S. 2010. The scalable heterogeneous computing (shoc) bench-
mark suite. In Architectural Support for Programming Lan-
guages and Operating Systems, 63–74.

DU, P., WEBER, R., LUSZCZEK, P., TOMOV, S., PETERSON, G.,
AND DONGARRA, J. 2010. From CUDA to OpenCL: Towards
a Performance-portable Solution for Multi-platform GPU Pro-
gramming. Tech. rep., Department of Computer Science, UTK,
Knoxville Tennessee, Sept.

MARK HARRIS AND SHUBHABRATA SENGUPTA AND JOHN D.
OWENS. 2007. Parallel Prefix Sum (Scan) with CUDA, vol. 3 of
GPU Gems.

NVIDIA CORPORATION. NVIDIA’s Next Generation CUDA Com-
pute Architecture: Fermi.

NVIDIA CORPORATION. 2010. NVIDIA CUDA C Programming
Guide, Oct.

NVIDIA CORPORATION. 2010. NVIDIA Tesla Datasheet, July.

PODLOZHNYUK, V. 2007. Black-Scholes Option Pricing. Tech.
rep., June.

RUETSCH, G., AND MICIKEVICIUS, P. 2010. Optimizing Matrix
Transpose in CUDA. Tech. rep., June.

SMITH, R. 2010. AMD’s Radeon HD 6870 & 6850: Renewing
Competition in the Mid-Range Market. AnandTech (Dec.).


