Abstract

General purpose GPU computation is a fast growing field with a variety of applications. For maximum performance, though, mapping high-level parallel algorithms to vendor hardware requires a solid grasp of both the algorithm’s computational requirements and the microarchitectural limitations of the GPU. This work aims to explore the performance of high and low arithmetic intensity workloads on the latest NVIDIA and AMD GPU hardware, codenamed Fermi and Barts, respectively. A summed area table generator and a Black-Scholes option pricer were used as benchmarks to analyze performance for compute- and bandwidth-bound algorithms. It was found that the AMD Barts GPU provided a 50% performance boost on the Black-Scholes compute-bound workload, whereas Fermi excelled at the more memory-bound summed area table computation.

Method

1. Develop a benchmark with low compute/memory access ratio
 - Summed Area Tables
2. Develop a benchmark with high compute/memory access ratio
 - Black-Scholes option pricing
3. Execute on both CUDA and OpenCL platforms

Results

- **Barts**
 - 14 compute units and 16 stream cores
 - Each stream core contains 5 scalar processing units
 - Each stream core executes a VLIW instruction bundle targeting these processing units
 - Black-Scholes saturates 4 or 5 units for a majority of the ALU instruction bundles
 - SAT leaves most idle
 - VLIW enables 2016 GFLOPS peak performance for Barts
 - Groups of 64 VLIW instructions with the same clause type are executed in SIMT bundles called wavefronts
 - Global memory accesses can suffer from both channel and bank conflicts
 - Local/Shared memory access can suffer from bank conflicts and bandwidth issues trying to satisfy VLIW processing units

- **Fermi**
 - 14 compute units and 16 stream cores
 - Each compute unit is 286x286 (14 stream cores)
 - Each stream core executes a VLIW instruction bundle
 - Groups of 64 VLIW instructions with the same clause type
 - 2 SIMT blocks ("warps") concurrently
 - Two SIMT blocks can schedule two SIMT bundles called wavefronts
 - Addresses a performance boon against partition camping in SAT
 - The addition of an L1 and L2 cache hierarchy relaxes memory coalescing restrictions compared to previous architectures
 - OpenCL and CUDA performance is very dependent on GPU compiler optimizations. Both generate PTX files that are executed by the GPU driver

References

ADVANCED MICRO DEVICES, INC. 2011. AMD Accelerated Parallel Processing OpenCL, Apr.
MARK HARRIS AND SHUBHAMBAKTA SENGAUTA AND JOHN D. OWENS. Parallel Prefix Sum (Scan) with CUDA, vol. 3 of GPU Gems.
NVIDIA CORPORATION. NVIDIA Tesla DataSheet, July.
SMITH, R. 2010. AMD's Radeon HD 6870 & 6850: Renewing competition in the mid-range market. AnandTech (Dec.).

Acknowledgements

Special thanks to Aleksandar Dimitrijevic for providing the AMD Radeon HD 6870 for testing, and to Patrick Cozzi and Jon McCaffrey for their advice and help.