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Objectives

* Performance tricks of a modern CPU
— Pipelining
— Branch Prediction
— Superscalar
— Out-of-Order (0Oo0) Execution
— Memory Hierarchy
— Vector Operations
— SMT
— Multicore



What is a CPU anyways?

e Execute instructions
* Now so much more

— Interface to main memory (DRAM)
— |/0O functionality

* Composed of transistors



Instructions

 Examples: arithmetic, memory, control flow
add r3,r4 -> r4
load [rd] -> r'/

Jjz end

* Given a compiled program, minimize

cycles seconds
: : X
instruction cycle

— CPI (cycles per instruction) & clock period

— Reducing one term may increase the other



Desktop Programs

Lightly threaded
_ots of branches

L ots of Mmemory accesses

vim 1s
Conditional branches 13.6% 12.5%
Memory accesses 45.7% 45.7%
Vector instructions 1.1% 0.2%

Profiled with psrun on ENIAC
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Intel® X79 Express Chipset Block Diagram Source: intel.com



http://www.intel.com/content/www/us/en/chipsets/performance-chipsets/x79-express-chipset-diagram.html

What is a Transistor?

* Approximation: a voltage-controlled switch
* Typical channel lengths (for 2012): 22-32nm

Channel

> N

p-substrate

Image: Penn ESE370 /



http://www.seas.upenn.edu/~ese370/fall2011/lectures/Day10_6up.pdf

Moore’s Law

* “The complexity for
minimum component
costs has increased at a
rate of roughly a factor
of two per year”

LOGz OF THE
MUMBER OF COMPONENTS

PER INTEGRATED FUNCTION

e Self-fulfilling prophecy

* What do we do with our
transistor budget?

Source: intel.com


ftp://download.intel.com/research/silicon/moorespaper.pdf
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Intel Core i7 3960X (Codename Sandy Bridge-E) — 2.27B transistors, Total Size 435mm?

Source: www.lostcircuits.com



http://www.lostcircuits.com/

A Simple CPU Core
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https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

A Simple CPU Core
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https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf
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https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Pipelining

e Capitalize on instruction-level parallelism (ILP)
+ Significantly reduced clock period

— Slight latency & area increase (pipeline latches)
? Dependent instructions

? Branches

* Alleged Pipeline Lengths:
— Core 2: 14 stages
— Pentium 4 (Prescott): > 20 stages
— Sandy Bridge: in between



Branches
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https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Branch Prediction

e Guess what instruction comes next
e Based off branch history

 Example: two-level predictor with global
history

— Maintain history table of all outcomes for M
successive branches

— Compare with past N results (history register)
— Sandy Bridge employs 32-bit history register



Branch Prediction

+ Modern predictors > 90% accuracy

o Raise performance and energy efficiency (why?)

— Area increase
— Potential fetch stage latency increase



Another option: Predication

* Replace branches with conditional instructions
; 1f (r1l==0) r3=r2
cmoveq rl, r2 -> r3

+ Avoids branch predictor
o Avoids area penalty, misprediction penalty

— Avoids branch predictor
o Introduces unnecessary nop if predictable branch

 GPUs also use predication



Improving |PC

* |PC (instructions/cycle) bottlenecked at 1
instruction / clock

e Superscalar —increase pipeline width
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Superscalar

+ Peak IPC now at N (for N-way superscalar)
o Branching and scheduling impede this
o Need some more tricks to get closer to peak (next)

— Area increase
o Doubling execution resources

o Bypass network grows at N?
o Need more register & memory bandwidth



Superscalar in Sandy Bridge

54 Entr:,,.F Unified Scheduler

Port 5 Port 2

128 bits
F

128 hItS

128 bit

256 bits

Image © David Kanter, RWT 22


http://realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=10

Scheduling

Consider instructions:

Xor rl,r2 =-> r3
add r3,r4 -> r4
sub r5,r2 -> r3
addi r3,1 -> rl

xor and add are dependent (Read-After-
Write, RAW)

sub and addi are dependent (RAW)

xor and sub are not (Write-After-Write,
WAW)



Register Renaming

* How about this instead:
xXor pl,p2 -> pb
add po6,pd -> p’/
sub pb5,p2 -> pS8
addi pS8, 1 -> p?9

* xor and sub can now execute in parallel



Out-of-Order Execution

Reordering instructions to maximize throughput

Fetch - Decode > Rename =2 Dispatch =2 Issue
- Register-Read = Execute =2 Memory 2
Writeback 2 Commit

Reorder Buffer (ROB)
— Keeps track of status for in-flight instructions

Physical Register File (PRF)

Issue Queue/Scheduler
— Chooses next instruction(s) to execute



000 in Sandy Bridge

' 28 pop Decoder Queue ’
4 u:::ps\l\

( 168 Entry Reorder Buffer (ROB) )

4 pﬂps:':

( 144 Entry FP Physical Register File ) ( 160 Entry Physical Register File )

4 u:::psT
| 54 Entry Unified Scheduler '

Image © David Kanter, RWT


http://realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=10

Out-of-Order Execution

+ Brings IPC much closer to ideal

— Area increase

— Energy increase

 Modern Desktop/Mobile In-order CPUs

— Intel Atom
— ARM Cortex-A8 (Apple A4, TI OMAP 3)
— Qualcomm Scorpion

* Modern Desktop/Mobile OoO CPUs
— Intel Pentium Pro and onwards
— ARM Cortex-A9 (Apple A5, NV Tegra 2/3, T| OMAP 4)
— Qualcomm Krait



Memory Hierarchy

* Memory: the larger it gets, the slower it gets
* Rough numbers:

Latency Bandwidth Size

SRAM (L1, L2, L3) | 1-2ns 200GBps 1-20MB
DRAM (memory) |70ns 20GBps 1-20GB
Flash (disk) 70-90us 200MBps 100-1000GB
HDD (disk) 10ms 1-150MBps |500-3000GB

SRAM & DRAM latency, and DRAM bandwidth for Sandy Bridge from Lostcircuits
Flash and HDD latencies from AnandTech

Flash and HDD bandwidth from AnandTech Bench

SRAM bandwidth guesstimated.
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http://www.lostcircuits.com/mambo/index.php?option=com_content&task=view&id=98&Itemid=1&limit=1&limitstart=7
http://www.anandtech.com/show/2614/8
http://www.anandtech.com/bench/SSD/261

Caching

* Keep data you need close
* Exploit:
— Temporal locality

* Chunk just used likely to be used again soon

— Spatial locality
* Next chunk to use is likely close to previous



Cache Hierarchy

 Hardware-managed

— L1 Instruction/Data
caches

— L2 unified cache
— L3 unified cache

e Software-managed
— Main memory
— Disk

S ®om S oo

Main Memory

|

Disk

(not to scale)
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Source: www.lostcircuits.com



http://www.lostcircuits.com/

Some Memory Hierarchy Design
Choices

e Banking
— Avoid multi-porting
* Coherency

* Memory Controller
— Multiple channels for bandwidth



Parallelism in the CPU

* Covered Instruction-Level (ILP) extraction
— Superscalar
— Out-of-order

* Data-Level Parallelism (DLP)

— Vectors

* Thread-Level Parallelism (TLP)
— Simultaneous Multithreading (SMT)
— Multicore



Vectors Motivation

for (int 1 = 0, 1 < N; 1++)
A[i] = B[1] + C[1i];



CPU Data-level Parallelism

e Single Instruction Multiple Data (SIMD)

— Let’s make the execution unit (ALU) really wide
— Let’s make the registers really wide too

for (int 1 = 0; 1 < N; 1+= 4) {
// in parallel

Al1] = B[1] + C[1];

A[i1+1] = B[1i+1] + C[1i+1];
A[i+2] = B[i+2] + C[i+2];
A[i+3] = B[i+3] + C[i+3]1;

35



Vector Operations in x86

* SSE2

— 4-wide packed float and packed integer instructions
— Intel Pentium 4 onwards
— AMD Athlon 64 onwards

* AVX

— 8-wide packed float and packed integer instructions
— Intel Sandy Bridge
— AMD Bulldozer



Thread-Level Parallelism

 Thread Composition
— Instruction streams
— Private PC, registers, stack
— Shared globals, heap

* Created and destroyed by programmer
e Scheduled by programmer or by OS



Simultaneous Multithreading

* |nstructions can be issued from multiple
threads

* Requires partitioning of ROB, other buffers
+ Minimal hardware duplication
+ More scheduling freedom for OoO

— Cache and execution resource contention can
reduce single-threaded performance



Multicore

* Replicate full pipeline
e Sandy Bridge-E: 6 cores

+ Full cores, no resource sharing other than last-
level cache

+ Easier way to take advantage of Moore’s Law

— Utilization



Locks, Coherence, and Consistency

Problem: multiple threads reading/writing to
same data

A solution: Locks

— Implement with test-and-set, load-link/store-
conditional instructions

Problem: Who has the correct data?
A solution: cache coherency protocol
Problem: What is the correct data?

A solution: memory consistency model



Conclusions

* CPU optimized for sequential programming
— Pipelines, branch prediction, superscalar, OoO

— Reduce execution time with high clock speeds and
high utilization

* Slow memory is a constant problem

e Parallelism

— Sandy Bridge-E great for 6-12 active threads
— How about 12,0007
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