CPU Architecture Overview

Varun Sampath
CIS 565 Spring 2012

Objectives

* Performance tricks of a modern CPU
— Pipelining
— Branch Prediction
— Superscalar
— Out-of-Order (0Oo0) Execution
— Memory Hierarchy
— Vector Operations
— SMT
— Multicore

What is a CPU anyways?

e Execute instructions
* Now so much more

— Interface to main memory (DRAM)
— |/0O functionality

* Composed of transistors

Instructions

 Examples: arithmetic, memory, control flow
add r3,r4 -> r4
load [rd] -> r'/

Jjz end

* Given a compiled program, minimize

cycles seconds
: : X
instruction cycle

— CPI (cycles per instruction) & clock period

— Reducing one term may increase the other

Desktop Programs

Lightly threaded
_ots of branches

L ots of Mmemory accesses

vim 1s
Conditional branches 13.6% 12.5%
Memory accesses 45.7% 45.7%
Vector instructions 1.1% 0.2%

Profiled with psrun on ENIAC

PCl Express* 2.0 Graphics DDR3 memory 12.8 GB/s
e — I
multi-card configurations [URSELE DOR3 memory 12.8 CBIs
2x16 & 1x8 .ach x1
or i-directior DDR3 memory 12.8 GB/s
1x16 & 3x8
or DDR3 memory 12.8 GB/s

1x16 & 2x8 2x4
DM

20 Gb/s

Intel® High
Definition Audio

14 Hi-Speed USB 2.0 Ports; 1 GB/s 8 PCl Express* 2.0

Dual EHCI; USB Port Disable each x1

Intel® Integrated Sl 6 Serial ATA Ports; eSATA:;
10/100/1000 MAC 6 Gb/s? Port Disable

I Intel® Rapid Storage
Intel® Gigabit LAN Connect Intel®* ME Firmware Technology enterprise 3.0

and BIOS Support

Intel® Extreme Tuning S ---- Optional
Support
Theoretical maximum bandwidth

2 Al SATA ports capable of 3 Gbis. 2 ports capable of 6 Gb/s.
Intel® X79 Express Chipset Block Diagram Source: intel.com

http://www.intel.com/content/www/us/en/chipsets/performance-chipsets/x79-express-chipset-diagram.html

What is a Transistor?

* Approximation: a voltage-controlled switch
* Typical channel lengths (for 2012): 22-32nm

Channel

> N

p-substrate

Image: Penn ESE370 /

http://www.seas.upenn.edu/~ese370/fall2011/lectures/Day10_6up.pdf

Moore’s Law

* “The complexity for
minimum component
costs has increased at a
rate of roughly a factor
of two per year”

LOGz OF THE
MUMBER OF COMPONENTS

PER INTEGRATED FUNCTION

e Self-fulfilling prophecy

* What do we do with our
transistor budget?

Source: intel.com

ftp://download.intel.com/research/silicon/moorespaper.pdf

O
-y
—

;;?2" 1".—,4 e .‘_.,__ ‘I‘.‘ ” }ﬁ’};:o':oﬂh

s

- 23z '.

‘ ‘;._ : -- s Queue, Uncore
: ’ ; D S & I/O

4tF~— t—-a ,.‘n ! —f,t:;. :

”Shared” :
..... L3 Cache

/J
-3
D

B e e S T

»
]

<6 NE

emory Controller

-

L »

Py ey
1 '.‘pJ.‘.

&. Mﬁ‘l LN
w0 L

|
SRR LS
)

NETH Y axe
" 2 b D
«

&
. 2

AR N R
.ﬁ!‘."l e

Tl

Intel Core i7 3960X (Codename Sandy Bridge-E) — 2.27B transistors, Total Size 435mm?

Source: www.lostcircuits.com

http://www.lostcircuits.com/

A Simple CPU Core

»PC

' Register
File
P> s1s2 d

C
iD—
N

>
%

D$

Image: Penn CIS501

10

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

A Simple CPU Core

File
> > 5152 d

—
) |-
< iD_
>
4
I IN
JocH 15 Register >

D$

L~

-

Fetch 2 Decode > Execute 2 Memory = Writeback

Image: Penn CIS501

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

y 3 y 3

| Register , ‘
File ‘ ‘| Data
)| Insn > 5152 d '[/ Nem
Mem P ¥ g
> >
Tinsn-mem Tregfile TALU Tdata-mem Tregfile
Tsinglecycle

Image: Penn CIS501

12

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Pipelining

e Capitalize on instruction-level parallelism (ILP)
+ Significantly reduced clock period

— Slight latency & area increase (pipeline latches)
? Dependent instructions

? Branches

* Alleged Pipeline Lengths:
— Core 2: 14 stages
— Pentium 4 (Prescott): > 20 stages
— Sandy Bridge: in between

Branches

9@ ®
> » A L:'— ® "o
Register >
File O |-@-—p » D |-
| B > Data
> s1 52 df| " _.. em
B e
F/D D/X X/M M/W
%{ > %{ :%{ —‘ :ﬁ
nop —1J”
l l l l
l l l l
l l l l
??? 2?7 I jeq loop | I
l l l l
I I I I

Image: Penn CIS501 °

https://www.seas.upenn.edu/~cis501/lectures/04_pipeline.pdf

Branch Prediction

e Guess what instruction comes next
e Based off branch history

 Example: two-level predictor with global
history

— Maintain history table of all outcomes for M
successive branches

— Compare with past N results (history register)
— Sandy Bridge employs 32-bit history register

Branch Prediction

+ Modern predictors > 90% accuracy

o Raise performance and energy efficiency (why?)

— Area increase
— Potential fetch stage latency increase

Another option: Predication

* Replace branches with conditional instructions
; 1f (r1l==0) r3=r2
cmoveq rl, r2 -> r3

+ Avoids branch predictor
o Avoids area penalty, misprediction penalty

— Avoids branch predictor
o Introduces unnecessary nop if predictable branch

 GPUs also use predication

Improving |PC

* |PC (instructions/cycle) bottlenecked at 1
instruction / clock

e Superscalar —increase pipeline width

& I

— B : | s
__> S| 18 - Regfile ’ i

HIVI ll

Image: Penn CIS371 20

Superscalar

+ Peak IPC now at N (for N-way superscalar)
o Branching and scheduling impede this
o Need some more tricks to get closer to peak (next)

— Area increase
o Doubling execution resources

o Bypass network grows at N?
o Need more register & memory bandwidth

Superscalar in Sandy Bridge

54 Entr:,,.F Unified Scheduler

Port 5 Port 2

128 bits
F

128 hItS

128 bit

256 bits

Image © David Kanter, RWT 22

http://realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=10

Scheduling

Consider instructions:

Xor rl,r2 =-> r3
add r3,r4 -> r4
sub r5,r2 -> r3
addi r3,1 -> rl

xor and add are dependent (Read-After-
Write, RAW)

sub and addi are dependent (RAW)

xor and sub are not (Write-After-Write,
WAW)

Register Renaming

* How about this instead:
xXor pl,p2 -> pb
add po6,pd -> p’/
sub pb5,p2 -> pS8
addi pS8, 1 -> p?9

* xor and sub can now execute in parallel

Out-of-Order Execution

Reordering instructions to maximize throughput

Fetch - Decode > Rename =2 Dispatch =2 Issue
- Register-Read = Execute =2 Memory 2
Writeback 2 Commit

Reorder Buffer (ROB)
— Keeps track of status for in-flight instructions

Physical Register File (PRF)

Issue Queue/Scheduler
— Chooses next instruction(s) to execute

000 in Sandy Bridge

' 28 pop Decoder Queue ’
4 u:::ps\l\

(168 Entry Reorder Buffer (ROB))

4 pﬂps:':

(144 Entry FP Physical Register File) (160 Entry Physical Register File)

4 u:::psT
| 54 Entry Unified Scheduler '

Image © David Kanter, RWT

http://realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=10

Out-of-Order Execution

+ Brings IPC much closer to ideal

— Area increase

— Energy increase

 Modern Desktop/Mobile In-order CPUs

— Intel Atom
— ARM Cortex-A8 (Apple A4, TI OMAP 3)
— Qualcomm Scorpion

* Modern Desktop/Mobile OoO CPUs
— Intel Pentium Pro and onwards
— ARM Cortex-A9 (Apple A5, NV Tegra 2/3, T| OMAP 4)
— Qualcomm Krait

Memory Hierarchy

* Memory: the larger it gets, the slower it gets
* Rough numbers:

Latency Bandwidth Size

SRAM (L1, L2, L3) | 1-2ns 200GBps 1-20MB
DRAM (memory) |70ns 20GBps 1-20GB
Flash (disk) 70-90us 200MBps 100-1000GB
HDD (disk) 10ms 1-150MBps |500-3000GB

SRAM & DRAM latency, and DRAM bandwidth for Sandy Bridge from Lostcircuits
Flash and HDD latencies from AnandTech

Flash and HDD bandwidth from AnandTech Bench

SRAM bandwidth guesstimated.

28

http://www.lostcircuits.com/mambo/index.php?option=com_content&task=view&id=98&Itemid=1&limit=1&limitstart=7
http://www.anandtech.com/show/2614/8
http://www.anandtech.com/bench/SSD/261

Caching

* Keep data you need close
* Exploit:
— Temporal locality

* Chunk just used likely to be used again soon

— Spatial locality
* Next chunk to use is likely close to previous

Cache Hierarchy

 Hardware-managed

— L1 Instruction/Data
caches

— L2 unified cache
— L3 unified cache

e Software-managed
— Main memory
— Disk

S ®om S oo

Main Memory

|

Disk

(not to scale)

30

= O ~+ v © M

Sk I/’()

,‘!—"t.'

'A.Shared” :
..... L3 Cache

B e e S T

.,.
LT

NETH Y axe
" 2 b D
«

&
. 2

AR N R
.ﬁ!‘."l e

<6 NE

emory Controller

-

e L
1 '.‘pJ.‘.

&. Mﬁ‘l LN
w0 L

|
AL L
)

'}_Q'

Intel Core i7 3960X — 15MB L3 (25% of die). 4-channel Memory Controller, 51.2GB/s total

Source: www.lostcircuits.com

http://www.lostcircuits.com/

Some Memory Hierarchy Design
Choices

e Banking
— Avoid multi-porting
* Coherency

* Memory Controller
— Multiple channels for bandwidth

Parallelism in the CPU

* Covered Instruction-Level (ILP) extraction
— Superscalar
— Out-of-order

* Data-Level Parallelism (DLP)

— Vectors

* Thread-Level Parallelism (TLP)
— Simultaneous Multithreading (SMT)
— Multicore

Vectors Motivation

for (int 1 = 0, 1 < N; 1++)
A[i] = B[1] + C[1i];

CPU Data-level Parallelism

e Single Instruction Multiple Data (SIMD)

— Let’s make the execution unit (ALU) really wide
— Let’s make the registers really wide too

for (int 1 = 0; 1 < N; 1+= 4) {
// in parallel

Al1] = B[1] + C[1];

A[i1+1] = B[1i+1] + C[1i+1];
A[i+2] = B[i+2] + C[i+2];
A[i+3] = B[i+3] + C[i+3]1;

35

Vector Operations in x86

* SSE2

— 4-wide packed float and packed integer instructions
— Intel Pentium 4 onwards
— AMD Athlon 64 onwards

* AVX

— 8-wide packed float and packed integer instructions
— Intel Sandy Bridge
— AMD Bulldozer

Thread-Level Parallelism

 Thread Composition
— Instruction streams
— Private PC, registers, stack
— Shared globals, heap

* Created and destroyed by programmer
e Scheduled by programmer or by OS

Simultaneous Multithreading

* |nstructions can be issued from multiple
threads

* Requires partitioning of ROB, other buffers
+ Minimal hardware duplication
+ More scheduling freedom for OoO

— Cache and execution resource contention can
reduce single-threaded performance

Multicore

* Replicate full pipeline
e Sandy Bridge-E: 6 cores

+ Full cores, no resource sharing other than last-
level cache

+ Easier way to take advantage of Moore’s Law

— Utilization

Locks, Coherence, and Consistency

Problem: multiple threads reading/writing to
same data

A solution: Locks

— Implement with test-and-set, load-link/store-
conditional instructions

Problem: Who has the correct data?
A solution: cache coherency protocol
Problem: What is the correct data?

A solution: memory consistency model

Conclusions

* CPU optimized for sequential programming
— Pipelines, branch prediction, superscalar, OoO

— Reduce execution time with high clock speeds and
high utilization

* Slow memory is a constant problem

e Parallelism

— Sandy Bridge-E great for 6-12 active threads
— How about 12,0007

References

* Milo Martin, Penn CIS501 Fall 2011
http://www.seas.upenn.edu/~cis501

* David Kanter, “Intel's Sandy Bridge
Microarchitecture.” 9/25/10.
http://www.realworldtech.com/page.cfm?Articlel
D=RWT091810191937/

* Agner Fog, “The microarchitecture of Intel, AMD
and VIA CPUs.” 6/8/2011.
http://www.agner.org/optimize/microarchitectur

e.pdf

42

http://www.seas.upenn.edu/~cis501
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

Bibliography

* Classic Jon Stokes’ articles introducing basic
CPU architecture, pipelining (1, 2), and
Moore’s Law

e CMOQV discussion on Mozilla mailing list

e Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in
Software.” link

http://arstechnica.com/paedia/c/cpu/part-1/cpu1-1.html
http://arstechnica.com/old/content/2004/09/pipelining-1.ars
http://arstechnica.com/old/content/2004/09/pipelining-2.ars
http://arstechnica.com/hardware/news/2008/09/moore.ars
https://mail.mozilla.org/pipermail/tamarin-devel/2008-April/000453.html
http://www.gotw.ca/publications/concurrency-ddj.htm

