
Team #3

University of Pennsylvania
School of Engineering and Applied Science

Department of Electrical and Systems Engineering

ESE Senior Design

PVS: Pacemaker Verification System

Sriram Radhakrishnan
sriramr@seas.upenn.edu

Varun Sampath
vsampath@seas.upenn.edu

Shilpa Sarode
sarode@seas.upenn.edu

May 4, 2012

Advisor: Professor Rahul Mangharam
rahulm@seas.upenn.edu

Phase 2 Report



Team #3

University of Pennsylvania
School of Engineering and Applied Science
Department of Electrical and Systems Engineering

Authors: Sriram Radhakrishnan, Varun Sampath, Shilpa Sarode

PVS: Pacemaker Verification System

Abstract

There are currently about 3 million individuals in the world who depend on pacemakers, which
are surgically implanted devices that maintain proper heart rhythm. Pacemakers, complex as they
are, are programmed with tens of thousands of lines of code, and are therefore inevitably prone to
bugs. It may not come as a surprise then that between 1990 and 2000, over 200,000 pacemakers
were recalled due to software issues.

The purpose of the Pacemaker Verification System, then, is to test pacemakers with the realism
of clinical trials but without their risks, with the goal of finding software errors before patient
implantation. Our system addresses this problem with a virtual heart that can be reconfigured to
exhibit different arrhythmias. The virtual heart was built by using finite state machines to model
the hearts signal propagation properties for these different arrhythmias. Using code generation
tools, these models were then directly translated to an FPGA hardware implementation, ensuring
that the behavior of the models was retained.

This virtual heart is able to interface with pacemakers and react to them in a manner that mimics a
real heart. It can both output heart beats to the pacemaker and react to paces from the pacemaker.
A top-level user interface allows manufacturers, regulators, and cardiologists to view the results of
this closed-loop, dynamic system. Such a system allows for interactions that no static heart model
can provide, thus offering more robust testing methods and thereby saving lives.

i Phase 2 Report



Team #3

Contents

Abstract i

List of Figures iv

List of Tables iv

1 Introduction 1

2 Discussion of Previous Work 4

2.1 Heart Modeling by the mLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Finite State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Nodes and Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 MATLAB Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Simulink Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Other Heart Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Strategic Plan and Structure 8

3.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 System Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Hardware and Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Hardware Requirements and Design Approach . . . . . . . . . . . . . . . 10

3.3.2 Software Requirements and Design Approach . . . . . . . . . . . . . . . . 12

3.4 Test and Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.1 Gantt Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5.2 Schedule Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Results 20

4.1 Virtual Heart Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Simplified Virtual Heart Model . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Complex Virtual Heart Model . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Automated Model Generation and Software Toolchain . . . . . . . . . . . . . . . . 22

ii Phase 2 Report



Team #3

4.3 FPGA Synthesis and I/O Implementation . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Pacemaker Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Runtime Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Device Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.8 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.9 Endless-Loop Tachycardia Demonstration . . . . . . . . . . . . . . . . . . . . . . 28

5 Lessons Learned 31

6 Equipment, Fabrication, and Software Needs 32

7 Conclusion 33

8 Nomenclature 34

9 References 35

10 Bibliography 36

11 Financial Information 37

11.1 Budget Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11.2 Itemized Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12 Ethical Issues 38

Appendices

Appendix 1: Additional Figures A1–1

Software Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1–1

Pacemaker Interface Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1–1

Appendix 2: Software and Hardware Code A2–1

A2.1: Virtual Heart Model Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2–1

Node Automaton HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2–1

Path Automaton HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2–2

A2.2: Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2–3

iii Phase 2 Report



Team #3

List of Figures

1 Node Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Path Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Gantt Chart (Page 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Gantt Chart (Page 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Gantt Chart (Page 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Gantt Chart (Page 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Oscilloscope Reading of Simplified Heart Model . . . . . . . . . . . . . . . . . . 21

9 Software Toolchain Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 Pacemaker Interface Circuit Block Diagram . . . . . . . . . . . . . . . . . . . . . 25

11 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

12 Final Product Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

13 Software Development Process Flowchart . . . . . . . . . . . . . . . . . . . . . . A1–1

14 Pacemaker Interface Circuit Schematic . . . . . . . . . . . . . . . . . . . . . . . . A1–2

15 Pacemaker Interface Circuit Layout . . . . . . . . . . . . . . . . . . . . . . . . . . A1–3

List of Tables

1 Product Prototype Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Resource consumption of singular node and path automaton for Xilinx Virtex-2P
FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Resource consumption of simplified heart model on DE0-Nano FPGA . . . . . . . 22

4 Resource consumption of complex heart model on DE0-Nano FPGA . . . . . . . . 22

5 Itemized Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv Phase 2 Report



Team #3

1 Introduction

Medical devices such as pacemakers are complex by nature. Therefore, it is not surprising that
about 41% of pacemakers and implantable cardioverter defibrillators were recalled between the
years of 1990 and 2000 [1, 2]. A closer look reveals that these recalls were most often due to
software-related issues. With over 80,000 lines of code, this again is not surprising. The number
of recalls and type of malfunction is a direct indication that robust pacemaker verification is lacking
somewhere between the manufacturing stage and FDA approval. Current FDA verification stan-
dards include reports from manufacturers ensuring functionality in open-loop testing scenarios.
Specifically, medical devices of life-sustaining nature such as pacemakers are required to undergo
the Premarket Approval (PMA) process, which involves animal testing, clinical trials, biocompat-
ibility, and manufacturing guarantees of stress, shelf life, and wear [3]. Therefore, pacemakers are
largely approved as long as they exceed some statistically relevant threshold of success for each of
these criteria rather than on the guarantee of obeying the inherent laws of electrophysiology. At the
end of the day, the reality is that each pacemaker implantation is still a human experiment whose
success rests on the statistics of its approval [4].

The proposed hardware platform confronts the issue of pacemaker verification from a top-down
approach rather than a bottom-up approach. The Pacemaker Verification System is a human heart
implemented on a physical hardware device. One can configure this heart to have varying elec-
trophysiological properties. Namely, this same hardware device can model several arrhythmias
simply by changing the heart’s parameters. Furthermore, the device will interface with a pace-
maker through its input and output signals. By entering various electrophysiological states, the
heart can therefore be used by manufacturers and regulators such as the FDA to check that the
pacemaker responds appropriately to all relevant arrhythmia scenarios. Instead of basing success
on statistical studies with seemingly arbitrary thresholds for what is acceptable, the pacemaker
can be put to test in a biological environment well before it is even implanted in a patient. The
objectives of this project are as follows:

• to select an FPGA platform
• to implement a configurable model of the human heart on the FPGA board
• to design and implement an interface between pacemaker and virtual heart, allowing for

closed loop interaction
• to design and implement a user interface
• to demonstrate the success of our system in catching a known pacemaker error as a proof of

concept.

Selecting an FPGA platform relied upon two constraints: resource consumption and budgeting.
Since the models themselves were constantly improved and updated throughout the implementa-
tion process, only an estimate of resource consumption was before selecting the hardware device.
This estimate was made by implementing smaller, simplified heart subsystems and then extrapo-
lating the resource consumption figures to our full model. The quantification process description
can be found in Section 3.3.1, with exact figures in Table 2. Secondly, we would like our product
to be low cost. The major expense is the FPGA board. Given the average cost of FPGA boards in

1 Phase 2 Report



Team #3

the market and especially those that are in the vicinity of our estimated resource needs, we wanted
to keep the cost of the board under $200 and successfully did so.

The second objective was to implement the configurable virtual heart. Configurable means that the
parameters of the model are sufficiently generalizable so that many arrhythmias can be modeled
with the same device simply by changing parameters. For implementation, one of the driving
principles behind our project was the minimization of human error in the design process. As
mentioned earlier, software is often the prime component of human error in complex devices. Our
method to minimizing this error was to utilize model-based design, with which we manipulated
design parameters at a high level of abstraction, and then used automatic code generation to acquire
the desired program. By synthesizing this generated code on our hardware devices, we ensured
that as designers, we had no involvement at the hardware programming layer. Any design changes
occured at the model level, which was more graphical and more intuitive and therefore less prone
to errors than was manual coding.

The next objective was to interface the heart with pacemakers. To make this heart model accessible
to pacemakers universally, we developed the virtual heart by treating the pacemaker as a black
box. That is, we only claimed knowledge of its inputs and outputs, and assume that methodology
and implementation are completely unknown. As an indication of success, by simply connecting
inputs and outputs, we should be able to engage the heart and the pacemaker in a closed-loop
conversation. Specifically, not only must the pacemaker react to an irregular heartbeat, but the
heart must respond to the pacemaker.

Lastly, a user interface was designed and implemented so that manufacturers and regulators can
intuitively switch between heart models. Measurement of success is mainly qualitative in the
feedback we received from our current contacts at the FDA and manufacturers such as Boston
Scientific. An undeniable measure of success will be if users who are not learned in cardiac
electrophysiology can still navigate the interface without difficulty. Therefore, we asked fellow
students to provide feedback as well.

PVS is a robust system because of the elimination of software errors through model-based design.
It is dynamic because of its configurability. Both of these aspects will be tremendously useful not
only for regulators such as the FDA, but also for researchers and developers. Introducing closed-
loop testing at various stages in the development process will catch errors early and potentially
save the cost of completing the production of defective products. Another potential advantage is
the projected reduction of product recalls. Recalls require surgical replacement of pacemakers,
which is a highly taxing procedure for patients. Therefore, not only will our product provide ad-
ditional savings for manufacturers from reduced recalls, but it would also greatly improve patient
experience. These goals are inherently long-term in nature. Our recent phone conversations with
Boston Scientific indicate that there is interest in the manufacturing industry for this kind of verifi-
cation system. Our measure of success is therefore an opportunity for our product to be put to test
in such manufacturing environments. With time and feedback, the system can be further improved
to reach these long term goals. Any actual reduction in recalls or expenses is an added tier of
success.

The major constraint of our project was the validation of the component electrophysiological mod-
els involved in the heart model. As design engineers, we must validate our model by specifying

2 Phase 2 Report



Team #3

what level of detail is sufficient. It would be too cumbersome and quite unnecessary to model the
heart to the finest biomolecular detail. First, the complete biomolecular structure of cells in organs
such as the heart is yet to be completely understood even in the natural sciences. Additionally,
pacemakers only regulate the heart through the heart’s electrical system. Therefore, any nonelec-
trical aspects of the heart, such as the hemodynamics, or blood flow for example, will not need
to be modeled. However, timing parameters are tightly linked to the electrical system, and must
therefore be taken into great consideration. Success of our product was determined by staying
within an acceptable margin of error in timing parameters. We checked that the heart responded in
an appropriate manner when pacemaker timing parameters were modified.

3 Phase 2 Report



Team #3

2 Discussion of Previous Work

Modeling the physiology of the human body is an important component of understanding how the
body works as well as for advancing medical research and development. Our project deals with
modeling the heart, specifically the electrophysiology of the heart. There has been some work on
this in the past, with various results.

Our main inspiration has been work done in the mLAB at the University of Pennsylvania. They
have been working on building a virtual heart model by mapping the electrophysiology of the heart
to finite state machines (FSMs). We will be using these FSMs to implement the heart model on an
FPGA board, using the concept of model-based development.

There have also been other attempts to model a heart. We shall begin by discussing the work at the
mLAB, and then talk about these other groups.

2.1 Heart Modeling by the mLAB

The heart is a four-chambered organ whose beat is regulated by the electrical properties of its
cardiac cells [5]. The heartbeat consists of the contraction of the two upper chambers (the atria)
followed by the contraction of the two lower chambers (the ventricles). The electrical signals
regulating these contractions have timing parameters associated with them. Modeling the heart
for our purposes, then, comes down to modeling the propagation of these electrical signals and
accounting for these timing parameters.

The heart beat is automatically regulated by the heart’s sinoatrial node, or the SA node, located at
the top of the right atrium. The SA node generates an electrical signal at regularly timed intervals,
thus automatically pacing itself at a rate close to the normal human heart rate of 60-100 beats per
minute. This generated signal is passed on to the rest of the tissue in a chain reaction manner,
thus causing the entire heart to contract sequentially from the top to bottom. The SA node is a key
component of the heart modeled through finite state machines.

The mLAB at the University of Pennsylvania has done extensive work into modeling the heart
using finite state machines, and specifically, extended finite state machines (eFSMs).

2.1.1 Finite State Machines

A finite state machine (FSM), or finite state automaton, is a model of a system based on a set of
inputs, outputs, and desired behavior [6]. This behavior is mapped into discrete states that are
possible for the system to be in. Movement between states is handled using transition conditions.
If the condition is satisfied, means that the transition will be taken. This condition can be a function
of the inputs and the current state. The term FSM or automaton is used interchangeably to refer to
this type of model.

An extended finite state machine, or eFSM, works very similarly to a regular FSM, but they differ
in how the transition conditions are described. In a standard FSM, a transition condition can only

4 Phase 2 Report



Team #3

Figure 1: FSM for the Heart Node [1] Figure 2: FSM for the Heart Path [1]

be boolean. In an eFSM, transition conditions are functions of the inputs and the current state [7].
These functions need not be boolean, and can in fact use integers or comparisons to denote the
condition.

2.1.2 Nodes and Paths

Prior work by the mLAB indicates that a heart can be modeled as a collection of nodes and
paths [1]. A node represents a group of heart tissue cells that share similar characteristics with
each other. Paths connect the nodes together based on signal flow in the heart. A heart is similar to
an electrical circuit in that signals analogous to current and voltage are propagated through path-
ways. A node, then, can be considered similar to a node in a circuit, while a path is analogous to
the wire connecting two nodes. By connecting nodes and paths in a particular topology, one can
model the signal propagation properties of the heart.

Each of these nodes and paths is modeled using an eFSM, as shown in Figures 1 and 2. The node
eFSM has three states, derived based on timing parameters of the heart tissue. These three states
are Rest, ERP, and RRP. A node cycles through these three states, spending a certain amount of
time in each one. This time is determined by the location of the node within the heart, when it
receives an impulse, and the characteristics of the tissue that the node represents. When a node in a
heart receives a signal, this input triggers a response by the node and starts a timing sequence that
is manifested in the node automaton by these three states.

The path automaton represents the connection between two nodes. Signals in the heart can have
either antegrade (forward) or retrograde (reverse) motion through a path, based on the directionality
of the path. While signals can travel in either direction through a path, there is a preferred direction
determined by the tissue that the path represents and the location of the path in the heart. This
directionality is represented in the eFSM by the timing parameters of the path, namely how long
it takes for signals to propagate through the path. The bidirectionality of the path is manifested in
the eFSM with the two possible transitions from the idle state: one for antegrade conduction and
the other for retrograde conduction. The double and conflict states serve to account for the effect
of two signals simultaneously in the path.

5 Phase 2 Report



Team #3

2.1.3 MATLAB Implementation

The mLAB implemented a heart model based on these node and path automata using code in
MATLAB [1]. This was purely to get a working model of the heart in the form of software.
However, as mentioned in the discussion of model-based design in Section 1, this hard-coded
implementation still has a layer of human error. Another drawback is that many of the automaton’s
transition conditions must be coded for sequential execution in the form of if-else statements rather
than concurrent execution, as is inherent in FSM design and in the heart itself.

2.1.4 Simulink Models

Finally, the most recent work deals with implementing these models in Simulink [1]. Simulink is
a model-building tool that is a part of MATLAB. The mLAB team has implemented a heart model
in Simulink using the node and path FSMs as the building blocks. Simulink also allows inputs
and outputs for the system, thus allowing for an interface with the model heart. A major benefit of
this approach versus the MATLAB implementation is the ability to scale. By simply adding more
nodes and more paths, one can get a more sophisticated and detailed model of the heart.

However, the problem with the existing models is that they are not feasible for hardware imple-
mentation, which is the required for our project. While Simulink has code generation utilities
that we plan on using as part of model-based development, a hardware implementation has certain
constraints that must be accounted for. For example, the current models employ floating-point
arithmetic, something that is infeasible for the hardware platform we are considering. In addition,
the current models are rather complex, and we must optimize them to better use the limited re-
sources of a hardware platform. We will go into more detail on what we plan to do to solve these
issues in Section 3.3.

2.2 Other Heart Models

Teresa Chay of the University of Pittsburgh has created a complex mathematical model that simu-
lates the function of a heart cell under various scenarios [8]. Her current model simulates a small
number of cells and their interactions with each other based on an initial impulse. This is similar
to what we intend to do in that it models the electrical behavior of the heart cells. However, Chay’s
project thus far deals more with understanding why arrhythmias occurs and less with how to fix it.
Our project is more about building a model that simulates the behavior of the heart for the purposes
of testing the ability of a pacemaker to return a heart back to a normal state from an error state.

Another group has done work with modeling the heart using a 3D computer simulation [9]. Denis
Noble and his group have built a program that simulates the interactions between cardiac cells.
They are quite detailed and account for minute variations between the various cardiac cells and
tissue. However, like the Chay project, this is an entirely software simulation. It is more difficult
to interface this software simulation with a pacemaker for testing purposes. A hardware platform is
more inclined towards an interface with pacemakers. In addition, both Chay’s and Noble’s models
are entirely implemented with software, whereas our platform will be based on a hardware heart

6 Phase 2 Report



Team #3

model. This hardware implementation can better simulate the concurrency of the heart (see Section
3.3 for more information).

7 Phase 2 Report



Team #3

3 Strategic Plan and Structure

We propose the design of a Pacemaker Verification System through model-based development and
code generation techniques. The following subsections will detail the theory of operation, the
specifications of the product prototype, the hardware and software required to build the product
prototype, the testing and demonstration procedures, and the schedule for development.

3.1 Theory of Operation

The Pacemaker Verification System is composed of several components. The principal component
is the field programmable gate array (FPGA) implementing the virtual heart model. The virtual
heart model itself is implemented with extended finite state machines as described in our discussion
of previous research in Section 2.1. It models the heart electrophysiology as a chain of node and
path automata. These models have been simulated using the Simulink and Stateflow software that
is part of MATLAB.

In line with our first two goals given in Section 1, we must implement a virtual heart model on an
FPGA. The constraints placed on picking an FPGA platform are outlined in Section 3.3.1. Once
selected, in order to load the virtual heart model on the FPGA, hardware description language
(HDL) code describing the model must be synthesized and placed on the board. A central tenet
of this project is that this HDL must be created using model-based development practices with
automated code generation. This assures that any properties of the original heart model (which
can be simulated and verified with logic) will also apply to the HDL implementation. The tradeoff
with this approach is the lack of optimization that handwritten code will have. Machine-generated
code tends to be very conservative, as the generator will prefer to unambiguously maintain model
semantics over any possible performance optimizations. The machine-generated code then may
implement additional logic and/or registers that may be unnecessary for the desired computation.
In the worst case, the machine-generated code might implement computations in a manner that
is infeasible on the FPGA, since the generator does not know the exact specifications of the un-
derlying hardware. As a result, generated HDL will place a greater burden on FPGA capacity
constraints. We will not sacrifice model functionality in order to fit these constraints; instead we
will optimize the models in order to generate more efficient HDL. In other words, by redesigning
the models to use constructs that we know will synthesize correctly and efficiently on the FPGA,
we can avoid bloat in the implementation that may cost us room for future feature additions. One
example is trading the precision of computation for die area, such as substituting floating-point
arithmetic for fixed-point or lookup table solutions. Section 3.3.2 describes this challenge in more
detail.

To interface the FPGA heart model implementation with both pacemaker models and actual pace-
makers in line with our third goal given in Section 1, I/O functionality is required. We will use the
FPGA’s general purpose I/O pins along with external analog conversion devices. Since the heart
model will run at the speed of the heart (i.e. 60-100 beats per minute), I/O will not be a bottleneck
for the design.

In line with our fourth goal given in Section 1, a user interface will also be built using these

8 Phase 2 Report



Team #3

I/O components. Whether to implement this user interface using PC software or through custom
hardware will involve trading portability and cost with ease of development.

A system block diagram incorporating all of these components is shown in Figure 3, and a flowchart
showing the software development process is shown in Figure 13 in the Appendix.

3.2 System Specifications

The primary goal of our system is to provide a testbed for analog pacemakers. As a result, accu-
racy in modeling a virtual heart and in developing an interface is of the utmost importance. The
following qualitative requirements indicate how our system will achieve the needs of the end user.

In order to meet the needs of the user, the pacemaker verification system must be able to satisfy
certain requirements:

• Equivalent accuracy to prior software simulations of the virtual heart model

– Node and path propagation delay match Simulink simulations in cycle count

– Timing delays coincide with pacemaker timing delays, such as post-ventricular atrial
refractory period (PVARP)

• Connectivity with at least one analog pacemaker
• Ability to simulate at least two different arrhythmias by modulation of timing parameters

As this is a product prototype, there are some quantifiable specifications as well. Table 1 gives
quantifiable specifications for the product prototype.

Table 1: Product Prototype Specifications

System total cost $150-$250
Power requirements ≤ 25 Watts
Number of heart nodes supported ≥ 25
Number of heart paths supported ≥ 25
Number of EEG probes supported ≥ 2
Switchable arrhythmias supported ≥ 2
Heart rate emulation 30-250 beats per minute

Specification Justification

We justify the first two quantitative specifications with our understanding of the system archi-
tecture. The FPGA board will be the bulk of the costs for the development of this system. By
choosing a low-cost board, our product prototype will be more accessible to a wider range of end
users. A low power board will also enable more portability. A USB-powered FPGA, for instance,

9 Phase 2 Report



Team #3

will enable us to fit within the power constraints and provide the end user with flexibility in using
the device.

For the next three goals, we determined that implementing models with at least this level of com-
plexity will provide useful results for our end users. For a prototype level, having at least two
arrhythmias supported will allow us to switch models for demoing and testing. Having the flexibil-
ity of different heart rates also enables broader coverage. This also showcases the real-time nature
of our system, since it is operating at the same spectrum of rates the human heart is capable of.

3.3 Hardware and Software Requirements

The pacemaker verification system will be a Simulink model physically implemented on a field
programmable gate array (FPGA) with an external interface to a pacemaker. The following sub-
sections will detail the hardware and software design approach we will take to build the product
prototype.

3.3.1 Hardware Requirements and Design Approach

As discussed in Section 2.1, the virtual heart model consists of many connected node and path
models. Like the hearts in our chests, these nodes and paths all have timing constraints that must
be considered concurrently. Therefore, a hardware implementation will be more realistic than
modeling the virtual heart in purely sequential iterative software. Since the model implementation
needs to be easily configurable in order to account for various heart conditions, a custom integrated
circuit solution would be too cumbersome. The best compromise then is a field programmable gate
array (FPGA), which is a device that allows the prototyping of digital logic. It is composed of an
array of look-up tables and registers with programmable interconnect. To program this device,
the development environment running on a computer will synthesize the appropriate look-up table
(LUT) and interconnect configuration for the desired digital logic, and will then implement this
configuration on the FPGA [10]. To specify the digital logic, a hardware description language
(HDL) will be used. We will use Verilog as our HDL because of our familiarity with the syntax.

Selecting and optimizing for a particular FPGA platform will be the bulk of our hardware design
for the first half of this product’s design timeline. The implementation of the virtual heart model
must be physiologically realistic while not exceeding the hardware limitations of the FPGA. An
FPGA has a limited number of look-up tables and registers, with more capable FPGAs having
dramatically higher purchasing costs. FPGAs also do not typically have floating-point logic, which
is required for the models based on prior research. Therefore, the models must be altered in order
to overcome this limitation.

Table 2 shows current estimations of resource consumption for the model implementations. These
estimations do not take into account the handling of floating-point arithmetic. If we also assume
that these estimations scale linearly, then a virtual heart model with 19 nodes and 19 paths will
consume 13319 LUTs. We should conservatively specify an FPGA with approximately 25000
LUTs, which should give a comfortable margin of error. Such an FPGA can run from $80 to $300

10 Phase 2 Report



Team #3

depending on the model [11].

Table 2: Resource consumption of singular node and path automaton for Xilinx Virtex-2P FPGA

Parameter Node Path Virtex-2P FPGA Capacity
LUTs 199 502 27392
Registers 73 80 27392

Once the model is implemented on an FPGA, an interface must be designed in order to interface
the model with a pacemaker. Initially, general purpose digital I/O pins available on all FPGA
development boards will be used to interface with digital pacemaker models. In order to interface
with actual pacemakers, however, an analog interface will be required. In order to save costs, we
will not pursue an FPGA with built-in analog I/O. We will instead design an interface with external
analog-to- digital converters and digital-to-analog converters, with microcontrollers and/or digital
signal processors if deemed necessary.

In terms of a user interface, additional hardware might be required. FPGAs do have video graphics
array (VGA) hardware for connecting to computer monitors, but the requisite HDL to drive the
interface might be overly complex and exceed our FPGA capacity constraints. We can develop
separate interfacing hardware using microcontrollers that displays data based on the signals the
FPGA sends to the pacemaker, or send data back to a PC over an external bus such as USB or
Serial.

A block diagram shown in Figure 3 shows at a high level the overall structure of the pacemaker
verification system, including interfacing and user interface blocks.

Virtual HeartInterfacing 
Circuit

Configuration 
and Visualization 

UI

atrial 
signal

ventricular 
signal

atrial lead

ventricular lead

Pacemaker

Figure 3: System Block Diagram

11 Phase 2 Report



Team #3

3.3.2 Software Requirements and Design Approach

Software development for this project is very different from that of typical software projects be-
cause of the requirement of model-based development. To ensure that the verified properties of the
virtual heart model will also apply to the hardware implementation, no HDL code can be hand-
written. As a result, the bulk of the software development for this project will be optimization and
design with Simulink and Stateflow models. The software requirements for the HDL machine-
generated from these models are that the implementation should fit within the FPGA’s hardware
capacity and that it also should have identical behavior to the simulation of the virtual heart model
in Simulink.

To meet these requirements, we must utilize the different capabilities of the Simulink/Stateflow
software and the Simulink HDL Coder code-generation package. Simulink HDL Coder will per-
form Verilog code-generation if given models in Simulink, but the efficiency of the generated code
is not optimal (for instance, unnecessary shifts and conversions in an attempt to do decimal arith-
metic).. To then address the first requirement, we must look into alternative models in order to
express some of the calculations that require heavy optimization, e.g. division and multiple mul-
tiplications. For example, the generated code performs floating-point arithmetic in some cases in
order to calculate values. This is not feasible on the FPGAs we are considering, and as a result,
we will have to implement approximation routines in models in order to account for this defi-
ciency. We are currently investigating two options to avoid floating-point arithmetic. One is using
fixed-point arithmetic; this has the advantage of being able to use highly efficient integer modules.
Another option is using tables, analogous to grade-school multiplication tables, that will allow the
FPGA to look up the answer to the computation instead of calculating it with arithmetic routines.
Other optimizations may be required in order to account for capacity constraints with block RAM
and distributed RAM on the FPGA.

To satisfy the second requirement, we will have to develop a suite of test routines in order to
validate the model’s implementation. These test routines will be both at the FPGA synthesis level,
using Verilog test benches, and also at the hardware level in order to do system integration testing.

Lastly, the Pacemaker Verification System requires a user interface for our users to both configure
the system and to run their tests on pacemaker devices. Since the reconfiguration may require
re-implementing the model on the FPGA, which requires the full FPGA vendor software suite,
this reconfiguration interface has the potential to be extremely complex. Thus, we need to explore
options for configuring FPGAs during runtime and/or using interfaces given by FPGA vendors.
Additionally, as described in the hardware design section, displaying the output of the FPGA model
will require additional software. If we use the FPGA to handle that as well, we will need to write
Verilog HDL to configure the VGA controller. On the other hand, if we use an external device, we
will have to write software for graphical I/O. Ideally such a display would include waveforms for
the heart beat propagation along with the ability to switch between models.

Figure 13 in the Appendix shows a flowchart describing the software design process for developing
this product prototype.

12 Phase 2 Report



Team #3

3.4 Test and Demonstration

Testing is an iterative process that must be considered throughout the design and implementation
of our product prototype. Similarly, we must also keep in mind of how we want to demonstrate
our prototype so that our work can be appreciated and utilized. The following subsections detail
how we will approach both testing and demonstration preparation.

3.4.1 Test

Accurate testing of the pacemaker verification system is crucial for the product prototype, because
this system is in turn a device to use for testing pacemakers. The critical metric for measuring the
success of the system then is the accuracy of the implementation with respect to both computer
models and real-world scenarios. We must therefore ensure accuracy of results within specified
bounds. Since the system is built off timing principles regarding the heart, we can measure ac-
curacy as minimizing the timing difference between signals from the system and signals from the
model or from a real heart.

For the implementation of the virtual heart, there are both unit and system tests that can be applied.
Our first unit tests are ensuring that the model implementation on the FPGA is accurate with
respect to the Simulink simulation. We can simplify models by using oscilloscope measurement
mechanisms and comparing the timing of the FPGA output to both the output of the Simulink
simulation (which was validated in prior research) and hand calculations with model parameters.
We have performed these unit tests with subsystems that included just one node, one node and one
path, two nodes and one path, and 19 nodes and 19 paths. All of our results were accurate on the
order of one millisecond, which is well within the margin of error when modeling the human heart,
since heart signals are on the order of tens to hundreds of milliseconds. As we develop models with
different parameterizations (in order to model different heart conditions/arrhythmia), our unit tests
will be extended to confirm that the implementation still operates within specification.

While unit tests provide us perspective on the accuracy of the prototype, further integration and
system testing is required. To do this, we will require third-party assistance from qualified experts
like cardiologists to verify the output of the virtual heart implementation under different operating
conditions. A cardiologist at the Hospital of the University of Pennsylvania previously verified the
output of MATLAB-based virtual heart simulations, so their verification of the FPGA implemen-
tation will provide an extra level of comfort.

We must also consider unit and system testing with regards to the pacemaker interface. We must
simulate various input and output conditions and use oscilloscopes to monitor and verify interac-
tions. We can also use “white-box” pacemaker implementations to test this feature. A “white-box”
implementation is one where all implementation details are known. Since we then know all as-
pects of both the virtual heart and the pacemaker implementation, it will be easier to investigate
interactions and pinpoint bugs. After this testing, a final round of system testing and verification
with real pacemakers and cardiologist approval will ensure accuracy as this functionality is added.

To summarize, the following tests can be and are used to check system accuracy:

13 Phase 2 Report



Team #3

• Unit testing by comparing cycle delay for signal propagation across nodes and paths against
simulation

• Comparing periodic delays across activations through debugging outputs

• Verifying against pacemaker timing parameters, such as post ventricular-atrial refractory
period (PVARP) and atrioventricular delay (AVI)

• Cardiologist approval

3.4.2 Demonstration

The demonstration of our product prototype will ideally be a fully functional system connected
to a real analog pacemaker. Our configuration and visualization user interface will be set up on
a connected laptop so that visitors can see the interactions between the two devices and reconfig-
ure the FPGA virtual heart implementation to simulate different disorders. Since viewers who are
not trained at the level of our end-users (FDA officials, pacemaker manufacturers, cardiologists)
might not understand the output, we will add visual cues to illustrate how the systems interact.
This demonstration will require access to a laptop running our software as well as a real pace-
maker. We have access to both of these demo requirements and are confident that we can make
this demonstration a reality.

3.5 Schedule

This project has several components and requirements, which can only be met through proper
scheduling. The Gantt chart for this project that outlines the plan of action for each member of
the team is shown on the next two pages in Figures 4 and 5. Section 3.5.2 discusses our current
position in meeting this schedule after one semester of progress.

3.5.1 Gantt Chart

14 Phase 2 Report



Team #3

ID
O
w
ne

r
Ta
sk
 N
am

e
Du

ra
tio

n
St
ar
t

Fi
ni
sh

1
VS

Se
le
ct
 a
nd

 D
ef
in
e 
Pr
oj
ec
t
5 
da
ys

Tu
e 
9/
6/
11

M
on

 9
/1
2/
11

2
SS

Pr
el
im

in
ar
y 
Re

se
ar
ch

82
 d
ay
s

M
on

 9
/1
2/
11

Th
u 
12
/1
/1
1

3
VS

An
al
yz
e 
IE
EE
 V
HM

 
Pa
pe

r
11

 d
ay
s

M
on

 9
/1
2/
11

M
on

 9
/2
6/
11

4
SS

St
ud

y 
ba
sic

 c
ar
di
ac
 

el
ec
tr
op

hy
sio

lo
gy

52
 d
ay
s

Th
u 
9/
15

/1
1

Th
u 
12

/1
/1
1

5
SR

An
al
yz
e 
ex
ist
in
g 

M
at
la
b 
co
de

 b
as
e

16
 d
ay
s

M
on

 9
/1
9/
11

M
on

 1
0/
10
/1
1

6
VS

An
al
yz
e 
ex
ist
in
g 

Si
m
ul
in
k 
m
od

el
s

15
 d
ay
s

M
on

 1
0/
10

/1
1

Su
n 
10

/3
0/
11

7
SR

Se
ni
or
 D
es
ig
n 

D
el
iv
er
ab

le
s

21
1 
da

ys
Sa
t 9

/2
4/
11

Fr
i 5
/4
/1
2

8
SR

Pr
oj
ec
t P

ro
po

sa
l

0 
da
ys

Sa
t 9

/2
4/
11

Sa
t 9

/2
4/
11

9
VS

El
ev
at
or
 P
itc
h

0 
da
ys

Sa
t 9

/2
4/
11

Sa
t 9

/2
4/
11

10
SS

Pr
op

os
al
 R
ev
ie
w

0 
da
ys

M
on

 1
0/
3/
11

M
on

 1
0/
3/
11

11
VS

Fi
rs
t R

ou
nd

 
Pr
es
en

ta
tio

n
0 
da
ys

Sa
t 1

0/
8/
11

Sa
t 1

0/
8/
11

12
SR

Fi
rs
t R

ep
or
t

0 
da
ys

Sa
t 1

1/
5/
11

Sa
t 1

1/
5/
11

13
SR

Se
co
nd

 R
ou

nd
 

Pr
es
en

ta
tio

n
0 
da
ys

Sa
t 1

1/
12
/1
1

Sa
t 1

1/
12

/1
1

14
SS

Ph
as
e 
I R

ep
or
t

0 
da
ys

Fr
i 1
2/
16
/1
1

Fr
i 1
2/
16

/1
1

15
SR

De
m
o 
Da

y
0 
da
ys

Th
u 
4/
19

/1
2

Th
u 
4/
19

/1
2

16
SS

SE
AS

 C
om

pe
tit
io
n

0 
da
ys

Fr
i 4
/2
7/
12

Fr
i 4
/2
7/
12

17
VS

Ph
as
e 
II 
Re

po
rt

0 
da
ys

Fr
i 5
/4
/1
2

Fr
i 5
/4
/1
2

18
VS

FP
G
A 
Ex
pl
or
at
io
n 
fo
r 

Bo
ar
d 
Se
le
ct
io
n

28
 d
ay
s

M
on

 1
0/
31

/1
1

M
on

 1
1/
28

/1
1

19
SR

Te
st
 g
en

er
at
io
n 
of
 H
DL

 
fo
r H

ea
rt
 S
ub

sy
st
em

2 
da
ys

M
on

 1
0/
31

/1
1

Tu
e 
11
/1
/1
1

VS

VS

SS

SR

VS

9/
24

9/
24 10

/3 10
/8

11
/5 11

/1
2

12
/1
6

4/
19 4/

27 5/
4

SR

28
4
11

18
25

2
9
16

23
30

6
13

20
27

4
11

18
25

1
8
15

22
29

5
12

19
26

4
11

18
25

1
8
15

22
29

6
13

2
Se
p 
'1
1

O
ct
 '1
1

N
ov
 '1
1

De
c 
'1
1

Ja
n 
'1
2

Fe
b 
'1
2

M
ar
 '1
2

Ap
r '
12

M
ay
 '1

Su
m
m
ar
y

M
an
ua
l T
as
k

Pr
og
re
ss

Pa
ge
 1

ES
E 
Se
ni
or
 D
es
ig
n

Te
am

 3
 (P

VS
) P

ro
je
ct
 P
la
n

Da
te
: T
hu

 5
/3
/1
2

Fi
gu

re
4:

C
om

pr
es

se
d

G
an

tt
ch

ar
ts

ho
w

in
g

pr
oj

ec
ts

ch
ed

ul
e

(P
ag

e
1)

15 Phase 2 Report



Team #3

ID
O
w
ne

r
Ta
sk
 N
am

e
Du

ra
tio

n
St
ar
t

Fi
ni
sh

20
VS

Im
pl
em

en
t B

as
ic
 F
SM

 
fr
om

 S
im

ul
in
k 
to
 F
PG

A
2 
da
ys

Th
u 
11
/3
/1
1

Fr
i 1
1/
4/
11

21
SR

D
es
ig
n 
an

d 
Im

pl
em

en
t

H
ea
rt
 N
od

e 
on

 F
PG

A
17

 d
ay
s

M
on

 1
1/
7/
11

M
on

 1
1/
21

/1
1

22
VS

Cl
oc
k 
Di
vi
sio

n
5 
da
ys

M
on

 1
1/
7/
11

Fr
i 1
1/
11
/1
1

23
SR

Re
m
ov
e 
In
fe
as
ib
ili
tie

s
5 
da
ys

Tu
e 
11

/8
/1
1

Sa
t 1

1/
12

/1
1

24
SS

I/
O
 Im

pl
em

en
ta
tio

n
4 
da
ys

Th
u 
11

/1
0/
11

Tu
e 
11

/1
5/
11

25
SR

G
en

er
at
e 
HD

L
4 
da
ys

W
ed

 1
1/
16

/1
1

M
on

 1
1/
21

/1
1

26
SS

De
sig

n 
an
d 
Im

pl
em

en
t 

Pa
th
 o
n 
FP
G
A

5 
da
ys

Su
n 
11

/2
0/
11

M
on

 1
1/
28
/1
1

27
VS

So
lic
it 
U
se
r F

ee
db

ac
k

73
 d
ay
s

W
ed

 1
1/
23

/1
1

Su
n 
2/
19

/1
2

28
SR

Co
nv
er
sa
tio

ns
 w
ith

 
Bo

st
on

 S
ci
en

tif
ic
 

Re
pr
es
en

ta
tiv

e

73
 d
ay
s

W
ed

 1
1/
23

/1
1

Su
n 
2/
19

/1
2

29
VS

Im
pl
em

en
t E

xt
en

de
d 

He
ar
t S
ub

sy
st
em

5 
da
ys

Tu
e 
11

/2
9/
11

M
on

 1
2/
5/
11

30
VS

N
SF
 P
re
se
nt
at
io
n

3 
da
ys

Sa
t 1

/2
8/
12

Su
n 
1/
29

/1
2

31
SS

M
ed

tr
on

ic
 

Pr
es
en

ta
tio

n
2 
da
ys

W
ed

 2
/8
/1
2

Th
u 
2/
9/
12

32
VS

H
ar
dw

ar
e 
Sy
nt
he

si
s o

f 
Si
m
pl
ifi
ed

 H
ea
rt
 M

od
el

12
 d
ay
s

Th
u 
12

/1
/1
1

Fr
i 1
2/
16
/1
1

33
SR

An
al
yz
e 
I/
O
 

Re
qu

ire
m
en

ts
3 
da
ys

Th
u 
12
/1
/1
1

M
on

 1
2/
5/
11

34
VS

O
pt
im

ize
 G
lo
ba
l 

Sy
nc
hr
on

iza
tio

n
6 
da
ys

Th
u 
12
/1
/1
1

Th
u 
12

/8
/1
1

VS

VS SR SS

SR

SS

SR

VS

VS

SS

SR VS

28
4
11

18
25

2
9
16

23
30

6
13

20
27

4
11

18
25

1
8
15

22
29

5
12

19
26

4
11

18
25

1
8
15

22
29

6
13

2
Se
p 
'1
1

O
ct
 '1
1

N
ov
 '1
1

De
c 
'1
1

Ja
n 
'1
2

Fe
b 
'1
2

M
ar
 '1
2

Ap
r '
12

M
ay
 '1

Su
m
m
ar
y

M
an
ua
l T
as
k

Pr
og
re
ss

Pa
ge
 2

ES
E 
Se
ni
or
 D
es
ig
n

Te
am

 3
 (P

VS
) P

ro
je
ct
 P
la
n

Da
te
: T
hu

 5
/3
/1
2

Fi
gu

re
5:

C
om

pr
es

se
d

G
an

tt
ch

ar
ts

ho
w

in
g

pr
oj

ec
ts

ch
ed

ul
e

(P
ag

e
2)

16 Phase 2 Report



Team #3

ID
O
w
ne

r
Ta
sk
 N
am

e
Du

ra
tio

n
St
ar
t

Fi
ni
sh

35
SR

Te
st
 F
un

ct
io
na
lit
y 

ba
se
d 
on

 T
im

in
g 

Pa
ra
m
et
er
s

10
 d
ay
s

M
on

 1
2/
5/
11

Fr
i 1
2/
16

/1
1

36
VS

H
ar
dw

ar
e 
Sy
nt
he

si
s o

f 
Fu
ll 
He

ar
t M

od
el

30
.5
 d
ay
s

Su
n 
1/
15
/1
2

Fr
i 2
/1
0/
12

37
SR

De
sig

n 
M
AT

LA
B 
Sc
rip

t 
to
 B
ui
ld
 S
im

ul
in
k 

M
od

el

17
 d
ay
s

Su
n 
1/
15

/1
2

Su
n 
1/
29

/1
2

38
SR

Im
pl
em

en
t L
oo

ku
p 

Ta
bl
es
 fo

r F
ra
ct
io
na
l 

Ar
ith

m
et
ic

12
 d
ay
s

Tu
e 
1/
31

/1
2

Fr
i 2
/1
0/
12

39
SR

Ex
pa

nd
 V
H
M

58
 d
ay
s

M
on

 2
/6
/1
2

Fr
i 4
/6
/1
2

40
VS

Pa
ra
m
et
er
iz
e 
VH

M
 

11
.6
 w
ks

M
on

 2
/6
/1
2

Fr
i 4
/6
/1
2

41
SS

M
od

el
 D
em

o 
Ca

se
s

7.
6 
w
ks

Fr
i 2
/2
4/
12

Fr
i 4
/6
/1
2

42
SS

FP
G
A‐
Pa

ce
m
ak
er
 

In
te
rf
ac
e

36
.6
3 
da

ys
M
on

 2
/2
0/
12

Su
n 
4/
1/
12

43
SR

An
al
yz
e 
Pa
ce
m
ak
er
 I/
O
6.
13

 d
ay
s

M
on

 2
/2
0/
12

Sa
t 2

/2
5/
12

44
VS

De
te
rm

in
e 
In
te
rf
ac
e 

Re
qu

ire
m
en

ts
6 
da
ys

Sa
t 2

/2
5/
12

W
ed

 2
/2
9/
12

45
SR

Te
st
 Im

pl
em

en
ta
tio

n
5.
13

 w
ks

Th
u 
3/
1/
12

Su
n 
4/
1/
12

46
VS

De
sig

n 
At
te
nu

at
io
n 

Ci
rc
ui
t

0.
4 
w
ks

Su
n 
3/
4/
12

Tu
e 
3/
6/
12

47
VS

De
sig

n 
O
pt
oi
so
la
tio

n 
Ci
rc
ui
t

4 
da
ys

M
on

 3
/1
2/
12

Th
u 
3/
15

/1
2

48
SS

De
sig

n 
In
te
rf
ac
e 
Ci
rc
ui
t

PC
B

8 
da
ys

W
ed

 3
/2
1/
12

Tu
e 
3/
27

/1
2

49
SR

U
se
r I
nt
er
fa
ce

32
.6
3 
da

ys
Th

u 
3/
1/
12

Su
n 
4/
8/
12

SR

SR

SR

VS SS

SR VS

SR

VS

VS

SS

28
4
11

18
25

2
9
16

23
30

6
13

20
27

4
11

18
25

1
8
15

22
29

5
12

19
26

4
11

18
25

1
8
15

22
29

6
13

2
Se
p 
'1
1

O
ct
 '1
1

N
ov
 '1
1

De
c 
'1
1

Ja
n 
'1
2

Fe
b 
'1
2

M
ar
 '1
2

Ap
r '
12

M
ay
 '1

Su
m
m
ar
y

M
an
ua
l T
as
k

Pr
og
re
ss

Pa
ge
 3

ES
E 
Se
ni
or
 D
es
ig
n

Te
am

 3
 (P

VS
) P

ro
je
ct
 P
la
n

Da
te
: T
hu

 5
/3
/1
2

Fi
gu

re
6:

C
om

pr
es

se
d

G
an

tt
ch

ar
ts

ho
w

in
g

pr
oj

ec
ts

ch
ed

ul
e

(P
ag

e
3)

17 Phase 2 Report



Team #3

ID
O
w
ne

r
Ta
sk
 N
am

e
Du

ra
tio

n
St
ar
t

Fi
ni
sh

50
VS

Im
pl
em

en
t S

er
ia
l I
/O

3 
da
ys

Th
u 
3/
1/
12

W
ed

 3
/7
/1
2

51
SR

Se
le
ct
 U
I D

ev
ic
e

3 
da
ys

Th
u 
3/
1/
12

Tu
e 
3/
6/
12

52
SS

De
sig

n 
U
I S
of
tw

ar
e

24
.6
3 
da
ys

M
on

 3
/1
2/
12

M
on

 4
/2
/1
2

53
SS

De
sig

n 
Ru

nt
im

e 
Sc
en

ar
io
 S
el
ec
tio

n 
In
te
rf
ac
e

12
 d
ay
s

W
ed

 3
/2
1/
12

Sa
t 3

/3
1/
12

54
SR

Te
st
 U
I S
of
tw

ar
e

6 
da
ys

M
on

 4
/2
/1
2

Su
n 
4/
8/
12

55
VS

Ve
rif
yi
ng

 F
PG

A 
Im

pl
em

en
ta
tio

n
23

 d
ay
s

Th
u 
3/
22

/1
2

Tu
e 
4/
10

/1
2

56
SR

Fo
rm

ul
at
e 

Si
m
ul
in
k‐
FP
G
A 

Co
m
pa
ris
on

 M
et
ho

ds

2 
w
ks

Th
u 
3/
22

/1
2

Fr
i 3
/3
0/
12

57
VS

Di
sc
us
s 

Im
pl
em

en
ta
tio

n 
w
ith

 
Ca
rd
io
lo
gi
st
s

11
.5
 d
ay
s

Su
n 
4/
1/
12

Tu
e 
4/
10

/1
2

58
SS

D
es
ig
n 
D
em

o 
D
ay
 

Pr
es
en

ta
tio

n 
Sc
en

ar
io
s

23
 d
ay
s

Th
u 
3/
22

/1
2

Tu
e 
4/
10

/1
2

59
SS

St
ud

y 
Pa
ce
m
ak
er
 

M
ed

ia
te
d 
Ta
ch
yc
ar
di
a 

(P
M
T)
 c
as
e

7 
da
ys

Th
u 
3/
22

/1
2

Tu
e 
3/
27

/1
2

60
VS

De
te
rm

in
e 
M
od

el
 

Se
tt
in
gs
 (T
im

in
g 

Pa
ra
m
et
er
s)
 fo

r P
M
T

9 
da
ys

Tu
e 
3/
27

/1
2

Tu
e 
4/
3/
12

61
SR

Im
pl
em

en
t P

M
T 
w
ith

 
VH

M
 a
nd

 P
ac
em

ak
er

9 
da
ys

Tu
e 
4/
3/
12

Tu
e 
4/
10

/1
2

VS SR

SS SS

SR

SR

VS

SS

VS

SR

28
4
11

18
25

2
9
16

23
30

6
13

20
27

4
11

18
25

1
8
15

22
29

5
12

19
26

4
11

18
25

1
8
15

22
29

6
13

2
Se
p 
'1
1

O
ct
 '1
1

N
ov
 '1
1

De
c 
'1
1

Ja
n 
'1
2

Fe
b 
'1
2

M
ar
 '1
2

Ap
r '
12

M
ay
 '1

Su
m
m
ar
y

M
an
ua
l T
as
k

Pr
og
re
ss

Pa
ge
 4

ES
E 
Se
ni
or
 D
es
ig
n

Te
am

 3
 (P

VS
) P

ro
je
ct
 P
la
n

Da
te
: T
hu

 5
/3
/1
2

Fi
gu

re
7:

C
om

pr
es

se
d

G
an

tt
ch

ar
ts

ho
w

in
g

pr
oj

ec
ts

ch
ed

ul
e

(P
ag

e
4)

18 Phase 2 Report



Team #3

3.5.2 Schedule Discussion

We were able to successfully complete our project. Our schedule presented in schedule presented
in Section 3.5.1 illustrates our progress. Tuning of our schedule over the months of February and
March allowed us to appropriately pace ourselves in the month of April, so that we did not have too
high a burden in April. A “monumental blitz” was spent regardless, as there was an ever-present
need to fine tune both the graphical user interface and the demonstration plan.

In retrospect, spending more time with the pacemaker initially would have given us more insight
into next steps earlier, and saved us planning trouble in the later months of February and March,
and perhaps left more room to accomplish some of the tasks we have now saved for future work.
Regardless, we are proud of our product prototype built over Phases 1 and 2.

19 Phase 2 Report



Team #3

4 Results

A product prototype of the Pacemaker Verification System was successfully built and tested against
a Boston Scientific Altrua S606 Pacemaker. We met our goal of inducing a form of Pacemaker-
Mediated Tachycardia (PMT) in our virtual heart in order to show the efficacy of the system. We
were able to reproduce Endless Loop Tachycardia (ELT), a pacemaker-induced arrhythmia that
causes the heart to beat at an abnormally rapid rate. We use this demo as an example of how our
closed-loop testing framework delivers results that typical static input testing systems could not
reproduce.

The following subsections detail the designs achieved for the following subcomponents of the
Pacemaker Verification System:

• Virtual Heart Model

• Automated Model Generation and Software Toolchain

• FPGA Synthesis and I/O Implementation

• Pacemaker Interface

• Runtime Reconfiguration

• Graphical User Interface

• Device Construction

• User Feedback

We end by discussing our demo of ELT and its implications.

4.1 Virtual Heart Model

The virtual heart model is the centerpiece of the Pacemaker Verification System. Our implemen-
tation on an FPGA enables us to model various arrhythmias and test pacemakers against those
“hearts” in a closed-loop environment. This section discusses the implementation of the model in
both its simplified and complex forms, and Section 4.2 discusses the implementation process.

4.1.1 Simplified Virtual Heart Model

Over the course of Phase 1, a simplified virtual heart model was implemented on our FPGA plat-
form as the basis for future models. As discussed in Section 3.3, FPGA boards have certain limita-
tions, and so the simplified models account for these limitations. Namely, all decimal division was
removed, as this was infeasible. Additional work was performed to simplify the communication
channels between the node and path automata in setting variable conduction delays.

20 Phase 2 Report



Team #3

These simplified node and path automata were connected together to create a full virtual heart
model. The topology of this model was based on an existing model created by the mLAB consisting
of 19 nodes and 19 paths connecting the nodes. Each node had an output showing activation.
Activation refers to the point at which the electrical signal initiated at the SA node reaches the
corresponding part of the heart that a node represents. By including activation outputs, the nodes
could be monitored to see when they get activated as a measure of signal propagation through the
heart model.

As shown in Figure 8, there is a clear, regular rhythm in the virtual heart model. Output 1 (yellow)
shows the activation of the sinoatrial (SA) node, which maintains natural rhythm in the heart.
Outputs 2, 3, and 4 represent three other nodes in the heart model. One can see that the signal
from the first node propagates to the other nodes after some time delay. More importantly, this
delay is consistent between heartbeats, and the heartbeats themselves occur at regular intervals.
By comparing delay and period measurements from the oscilloscope to the timing parameters set
in the Simulink models, proper functionality was confirmed. We also confirmed that the simplified
heart implementation fit well within our capacity constraints. Table 3 shows the utilization of the
simplified heart implementation on the DE0-Nano FPGA board.

Figure 8: Oscilloscope Reading of Simplified Heart Model

21 Phase 2 Report



Team #3

Table 3: Resource consumption of simplified heart model on DE0-Nano FPGA

Parameter Quantity DE0-Nano FPGA Percentage
LUTs 4485 22320 20.1%
Registers 1925 22320 8.6%

4.1.2 Complex Virtual Heart Model

The beginning of Phase 2 focused on reimplementing some of the complexities of the virtual heart
model that were removed for the implementation of the simplified model. One such feature was a
varying time period for the duration of the ERP state in the node automata. This was a function
of the current state at the time of activation, and the resulting value is based off decimal division.
Since the denominator is constant at runtime (only variable depending on the node itself), one-
dimensional lookup tables were generated for each node automata to calculate this ERP duration.
Additionally, two-dimensional lookup tables were constructed for calculating conduction delay
ratios in the paths, but this functionality offered marginal benefits and was subsequently removed.
Table 4 shows resource utilization of the complex virtual heart model with node automata lookup
tables using the same topology as the simplified model presented in the previous section. Resource
consumption increased substantially to 34%, due to the use of LUTs as multiplexers for the 1D
lookup table implementation.

Table 4: Resource consumption of complex heart model on DE0-Nano FPGA

Parameter Quantity DE0-Nano FPGA Percentage
LUTs 7575 22320 34%
Registers 2288 22320 10%

In summary, virtual heart models with varying levels of complexity were constructed. Both models
allow us to emulate hearts with different arrhythmias and provide our base for testing pacemakers.

4.2 Automated Model Generation and Software Toolchain

We have developed an automated system for generating virtual heart models with MATLAB. We
can specify a base modeling library for node and path automata along with a topology and delay
configurations for each automata instance, and have as a result generated hardware description
language (HDL) for the entire heart. We can simply copy this generated HDL into our FPGA
I/O harness (described in Section 4.3 and synthesize an FPGA implementation that will run on
hardware in minutes.

Figure 9 shows the progression of the model in our software toolchain. MATLAB is used by our
automated build tools to generate the HDL, and Altera’s Quartus FPGA tools are used to deliver

22 Phase 2 Report



Team #3

Optimize 
models 

(Stateflow) 

Generate 
HDL 

(Simulink 
HDL Coder) 

Synthesize 
HDL (Xilinx 
ISE/Altera 
Quartus) 

Synthesis 
passed? 

Restructure 
models 

(Stateflow) 

Implement on FPGA 
(Xilinx ISE/Altera 

Quartus) 

No 

Yes 

Figure 9: Software Toolchain Flow

our hardware implementation. With minimal future work the Quartus toolchain segment can also
be scripted to run automatically. The end result is that the expert user who wishes to design their
own models can be given the more intuitive interface of MATLAB to lay out and simulate their
models, and our software can transfer this model to the FPGA.

4.3 FPGA Synthesis and I/O Implementation

The virtual heart was implemented on an Altera Cyclone IV FPGA with the Terasic DE0-Nano
development board. The DE0-Nano board was chosen for reasons of cost capacity, and I/O. At
$60 to $100 depending on distributor, the board is remarkably inexpensive. The capacity was
also more than sufficient for our needs. Space tests conducted during Phase 1 (and detailed in
Section 3.3.1 indicated that the board would have sufficient capacity for modeling the virtual heart.
In practice, the board more than met our requirements for both virtual heart implementation and
harness (for facilitating I/O) implementation. In terms of the I/O itself, the development has plenty
of general purpose, bidirectional I/O pins that we could use for both facilitating debugging and
practical I/O considerations.

23 Phase 2 Report



Team #3

FPGA synthesis involved using the Altera Quartus II FPGA development software. Synthesizing
a new update to the Pacemaker Verification System is extremely straightforward. Because of the
automatic HDL code generation, the build involves simply copying the new HDL to the build
harness and invoking synthesis, all of which can be scripted.

The build harness allows the generated virtual heart to be seamlessly interfaced with the board I/O.
The harness has the following components:

• Phased-locked Loop (PLL) - needed for configuring the heart clock rate at 1.5kHz

• LED I/O - for debugging and visualization

• Serial transmitter - for transmitting heart data to a computer for interfacing

• Warning light - indicator for heart bradycardia or tachycardia

• Pacemaker input capture

• Mode setter - for heart runtime reconfiguration

Of particular note are the serial transmitter, pacemaker input capture, and mode setter. The serial
transmitter is designed to send heart model data to a computer for visualization on a graphical user
interface. Since the virtual heart model is entirely based on timing, timing values were captured at
various triggers and then sent across the serial I/O line. Timing values were captured by maintain-
ing a “clock” whose value could be read and interpreted by the PC at the other end of the serial
connection. This timing value was represented as a 4-byte unsigned integer, and a one-byte header
was added in order to distinguish different timing triggers. The triggers were set to sinoatrial node
(i.e. atrial) activation, right ventricular node (i.e. ventricular) activation, and atrial and ventricular
pacing signals. The transmitter is able to distinguish between pacing and sensing events or the
combined pace and sense event so that all possibilities of results can be represented. The transmit-
ter itself is built using a finite-state machine to push the total 5 bytes of data whenever necessary
at 115200 baud. The resulting transmitter is able to cope with fast tachycardia scenarios thanks to
its high baud rate, and has been reliable in providing data for visualization.

The pacemaker input capture hardware is necessary because of pulse widths coming from the opto-
isolation interface. Due to noise and attenuation, the pacemaker input signal had an amplitude of
greater than 2 volts and a width of only 70 microseconds. The pulse width needed to be increased
since the heart only samples at a rate of 1.5kHz. A finite-state machine was designed to latch
pacemaker pace signals appropriately so that the heart model could receive their input.

The mode setter enables the Pacemaker Verification System to be reconfigured at runtime to model
different arrhythmias. It consists of a serial receiver that interprets data sent from a PC across
an additional serial line. Additionally, signals for premature atrial and ventricular contractions
are encoded into the reconfiguration bytes. See Section 4.5 for further discussion on runtime
reconfiguration. This mode setter interface is scalable to support a variety of other inputs, so in
future revisions many more parameters can be reconfigured at runtime for the virtual heart model.

In summary, the FPGA I/O harness combined with the machine-generated virtual heart model
allow us to seamlessly revise and configure the Pacemaker Verification System.

24 Phase 2 Report



Team #3

4.4 Pacemaker Interface

A circuit for interfacing the pacemaker with the FPGA-based virtual heart was designed and fabri-
cated. The circuit accomplished its two goals of correcting voltage levels between the FPGA and
the pacemaker and isolating the signals between the two devices.

As a precursor to discussing the internals of the circuit, it is necessary to discuss the design of the
pacemaker input and output systems. The pacemaker interfaces with the heart through two leads,
one for the atrium and one for the ventricle. Each lead has two conductors, one called the ring and
the other called the tip. To pace, the pacemaker applies a potential difference from the ring to the
tip with a programmable width and amplitude (width ranges in tens of milliseconds and amplitude
has a maximum of 7.5V). To sense, the pacemaker simply detects a voltage difference between the
ring and the tip above a certain threshold (which has a maximum level of 10mV). Boston Scientific
technicians advised that sensed voltages should stay close to 15mV in amplitude.

Since the FPGA board used has digital pins that accept a high input from 3-5V, and output a high
signal at approximately 4.2V, it was necessary to attenuate the output “heart beat” from the FPGA
to the millivolt range and to program the pacemaker to output a pace signal with an amplitude of
3.5V. Since the impedances for the pacemaker leads was unknown and crosstalk and supply noise
was a concern with low amplitude signals, isolation was also incorporated in the circuit through
opto-isolation. Figure 10 provides a block diagram for the interface circuit between the FPGA
heart and the pacemaker.

FPGA (VHM) Pacemaker

Attenuation Circuit

Attenuation Circuit

Atrial Beat

Ventricular Beat

Attenuated 
Atrial Beat

Attenuated 
Ventricular Beat

Atrial Pace

Ventricular Pace

Opto-isolator

Opto-isolator

Opto-isolator

Opto-isolator

Ventricular Pace

Atrial Pace

Figure 10: Pacemaker Interface Circuit Block Diagram

The final version of the attenuation circuit was built using the LF347N JFET operational amplifier
(op-amp). This op-amp was used to build two inverting amplifiers in series. The first amplifier

25 Phase 2 Report



Team #3

had a fractional gain of 0.0015, and the second amplifier had a gain of 1 (simply used to invert the
signal). The isolator was used to bring the input “heart beat” to a 9V peak, so that the attenuation
circuit output had a theoretical pulse amplitude of 9 × 0.0015 = 13.5mV. This allowed the pace-
maker to correctly sense the heart beat given its sensitivity range. The output pacing signals from
the pacemaker were not attenuated, but were isolated so that the FPGA only received signals pow-
ered through its own supply. To maintain a clean supply source for the isolation and attenuation
circuits, two 9V DC batteries were used. The resulting circuit allowed the system to have full pace
and sense functionality with a current pacemaker. Figure 14 in the Appendix has the full schematic
for the interface circuit.

This circuit was additionally fabricated. Layout was performed using the Eagle CAD software
package and was designed to fit in a printed circuit board that was approximately the same size as
the FPGA for design. An image showing the Eagle layout of the board is given in Figure 15 in the
Appendix.

4.5 Runtime Reconfiguration

An important aspect of the Pacemaker Verification System is to be reconfigurable so that pace-
makers can be tested against hearts with different arrhythmias. While new models can be designed
in MATLAB and synthesized on the FPGA using our software toolchain, it is important that the
model already implemented on the board is reconfigurable at runtime so that users can instantly
change their test configuration. The current implementation has two parameters exposed that al-
ready allow substantial freedom in changing the emulated heart condition. The first parameter is
the sinoatrial node rest period, which dictates the amount of time the heart “rests” before its next
activation. In other words, changing this parameter directly changes the heart rate of the model.
The second parameter exposed is the atrioventricular path forward conduction delay, which con-
trols the delay in signal propagation from the atria to the ventricles of the heart.

The mechanisms to allow this reconfiguration are built in to the model and into the FPGA I/O
harness. The MATLAB models themselves expose these two parameters for reconfiguration, and
the mode setter module (discussed in Section 4.3), allow these values to be set via serial I/O. The
graphical user interface then exposes these values for user manipulation.

Additionally, the models and the FPGA harness allow for premature atrial and ventricular contrac-
tion events to occur. These one-time events allow the virtual heart to emulate extra beats in the
atria or the ventricles, which are natural events that can lead to scenarios like endless-loop tachy-
cardia. Emulation of these events allow us to deterministically evaluate their impact, which is an
advantage that testing via clinical trials cannot provide due to the inherent nondeterminism of the
human heart. We provide one example of their utility in the discussion of endless-loop tachycardia
in Section 4.9. In future work, the runtime reconfiguration system can be expanded to include far
more parameters (approximately 50 in the currently used model). This will allow expert users to
be able to fully reconfigure the virtual heart to expose any arrhythmia/test condition they wish to
evaluate a pacemaker against.

26 Phase 2 Report



Team #3

4.6 Graphical User Interface

A graphical user interface (GUI) was designed in MATLAB to both configure and visualize the
output of the Pacemaker Verification System. The GUI communicates via a bidirectional serial
interface to the FPGA virtual heart, so it can both configure and visualize the heart state in real-
time. On the visualization side, the GUI displays pulses for any event data transmitted by the virtual
heart. This event data is currently the occurrence of an atrial or ventricular sense or an atrial or ven-
tricular pace. The GUI collects this data in real-time and intuitively separates it into different plots.
It also calculates the heart rate and displays it in a meter on the bottom-right corner for straightfor-
ward recognition. When the heart rate exceeds the tachycardia limit or dips below the bradycardia
limit, the GUI flashes and plays an alarm signal to indicate trouble. In normal operation, a beep
occurs for every ventricular beat in order to mimic hospital heart monitors. Additionally, to aid
intuitive visualization, the GUI can overlay a surface electrocardiogram (ECG) waveform over the
atrial and ventricular events. The ECG scales appropriately in regard to changing atrioventricular
delay.

In terms of configuration capabilities, the GUI enables the runtime reconfiguration of the sinoatrial
rest period and the atrioventricular forward conduction delay, and the emulation of premature
atrial/ventricular contractions as described in Section 4.5. It can also dictate that the virtual heart
disconnect itself from the pacemaker, so that we can see how the heart behaves without pacemaker
interaction.

With its dual roles of visualization and reconfiguration, the GUI has become an essential com-
ponent of the Pacemaker Verification System. Future work can expand it further to expose more
parameters to expert users and even more data for visualization. A screenshot of the current GUI
is shown in Figure 11.

4.7 Device Construction

A physical enclosure was built to accommodate the FPGA virtual heart, the interface circuit, the
battery supplies, and the connection to the pacemaker. The enclosure was designed in SolidWorks.
Figure 12 shows the final device design.

4.8 User Feedback

We have conducted conversations with various potential end users for feedback on our design and
feature suggestions. One such conversation was with Jonathan Krueger of Boston Scientific, a
medical devices manufacturer. Jonathan is an engineer in the Cardiology, Rhythm, and Vascular
Group, and is very experienced in pacemaker design. We learned from him how pacemakers
are currently tested in his company, namely with custom simulators. He is intrigued with our
work with FPGAs and offered a feature suggestion of simulating “ectopic” arrhythmia, where the
cardiac rhythm arises from outside the normal sinoatrial (SA) node.

We have also demonstrated our project to Dr. Sanjay Dixit, who is Director of the Cardiac Electro-

27 Phase 2 Report



Team #3

Figure 11: Graphical User Interface

physiology Laboratories at the Philadelphia VA Medical Center. He is appreciative of our efforts to
model the electrophysiology of the heart in hardware, and suggested several newer pacemaker al-
gorithms to test against next with newer heart models, such as bi-ventricular pacing and post-PVC
(premature ventricular contraction) response. He also suggests the use case of education, where
the Pacemaker Verification System can be used to teach medical students about heart electrophys-
iology and also the impact of a pacemaker. For this use, he suggests making a more technical user
interface that exposes more parameters and runtime details.

The conclusion we received from our feedback conversations is that the Pacemaker Verification
System has a solid foundation in its product prototype form, and that there are plenty of avenues
to pursue further work.

4.9 Endless-Loop Tachycardia Demonstration

We successfully demonstrated a real pacemaker putting our virtual heart into endless-loop tachy-
cardia (ELT) in our Pacemaker Verification System. ELT is a pacemaker-induced arrhythmia that
causes the heart to beat at an abnormally rapid rate. For it to occur, the heart must have certain
properties that make the pacemaker’s various timing delays destructive. One property is the retro-
grade conduction of a signal from the ventricles to the atrium, a property that is built into our path
automata and has reconfigurable delay. Another property is the possibility of a premature ventric-
ular contraction (PVC). This premature contraction retrogradely conducts to the atria, where it is
detected as an atrial sense. The pacemaker follows with a ventricular pace, which retrogradely

28 Phase 2 Report



Team #3

Figure 12: Final Product Picture

conducts as before, starting an endless feedback loop.

We must note that a scenario like this can only be tested with a closed-loop system like the
Pacemaker Verification System. The feedback loop can only occur if the pacemaker responds
to the heart’s output and the heart’s retrograde conduction responds to the pacemaker’s output. By
demonstrating this scenario, we validate the necessity of a closed-loop testing environment.

Demonstration of this scenario also verifies our model. For this scenario to work, the model
had to have retrograde conduction delays greater than the post-ventricular atrial refractory period
(PVARP), which we were able to systematically tune to be the case. The cyclic period of the heart
was also validated with the pacemaker’s lower rate limit (LRL), and the maximum tracking rate
also validated the model’s pacing ability at the correct rate. By measuring the system’s operation
against a black-box pacemaker, we were able to verify its accuracy.

Endless-loop tachycardia is not a new phenomenon in dual-chambered pacemakers [12], but the
fact that the virtual heart was able to reproduce this error with a real pacemaker provides another
level of validation to our design. If we provide the appropriate level of reconfigurability, then a
specialist will be able to apply different timing parameters to the virtual heart such that they can
test corner cases for other algorithms, and perhaps even new pacemaker algorithms on the horizon.
This is a key strength of the platform; the generic and flexible design of the virtual heart model
enables it to be applied to a variety of scenarios. The scenarios outlined by our user feedback in
Section 4.8 are all possible given the right timing parameters for the model. This demonstration

29 Phase 2 Report



Team #3

of our product prototype gives us a glimpse into its capabilities, and suggests a bright future with
further work.

30 Phase 2 Report



Team #3

5 Lessons Learned

There are many lessons learned during the course of a year-long project that one wishes they knew
at the beginning. One of the most important tools when working with a team on an extended project
is having a strong, clear schedule. This schedule should clearly outline the various components
and sub-components of the project, and which team member will be working on each part. Such a
schedule allows anyone, whether it be the team or an advisor, to know at any time how the project
is proceeding and whether every team member is contributing equally to the project. Having a
schedule also allows the team to plan out the various parts of their project. While it is inevitable
that the schedule will change, it is nonetheless helpful to have a plan instead of just doing work as
necessary.

Another important lesson is to pick a good team. Working with trustworthy and dependent people
is crucial to having a successful and enjoyable project. In addition, having a good team dynamic
makes it easier to adapt to changing project requirements and unexpected surprises.

Finally, it is absolutely important to start early. Initially, much research had to be done into mod-
eling a heart, and work went slowly. However, because this initial research started in September,
there was sufficient time to complete the project by April.

31 Phase 2 Report



Team #3

6 Equipment, Fabrication, and Software Needs

Apart from software available within Penn Engineering, we will need the following items for this
project:

• Simulink HDL Coder

• Altera/Terasic DE0-Nano FPGA Board

• Sparkfun FTDI Basic Breakout Board (3.3V)

• Toshiba TLP-624 Opto-isolation IC

• LF347 Quad JFET Operational Amplifier IC

• Boston Scientific Altrua S606 Pacemaker

Simulink HDL Coder will enable us to machine generate HDL and conform to our model-based
development principles. See Section 3.3.2 for more information on this subject. We have also
selected an FPGA board for this project, the Altera/Terasic DE0-Nano. This board satisfies our
capacity constraints while within a low cost and low power envelope. See Section 4.1.1 for more
information on this selection.

32 Phase 2 Report



Team #3

7 Conclusion

1. A virtual heart model was implemented on an the Altera/Terasic DE0-Nano FPGA board
with minimal resource consumption and approval from the input of a cardiologist. These
results meet our propsed goals of achieving an accurate heart model that is extensible. With
the resource consumption at around an average of 22%, the heart model can be extended to
four or five times the complexity without moving to a new board.

2. The implementation of the heart model was designed to be an automatic process, thus en-
suring our desired goal of error-reduction. Theoretical models at a high level of abstraction
were created and HDL code for hardware synthesis was automatically generated. Therefore,
any changes made at the model level progrates all the way down to hardware. This model
can be expanded to include increasingly greater levels of complexity in the heart. This is a
portion of the project that can be expanded upon in the future.

3. The heart model was successfully interfaced with a real pacemaker. This result demonstrates
the desired goal of building a testing platform by treating the pacemaker as a blackbox.
Simply by configuring heart I/O of the pacemaker I/O, the two are able to talk with each
other. Furthermore, an important principle of opto-isolation was implemented so that the
two systems are electrically isolated, thus reducing risk associated with cross-talk. Future
work would include interfacing with more than one pacemaker to demonstrate universality.

4. A user interface was implemented to meet our goal of making our system accessible. The
interface allows the user to configure the heart model intuitively simply by changing pa-
rameters. As a proof of concept, three preset heart models were implemented. In addition,
controls were added on the interface to demonstrate that future custom models are intuitive
to implement. Furthermore, the user is able to visualize the heart and pacemaker outputs
graphically to ensure correctness of pacing. Ideally, all timing parameters should be exposed
to the user interface. Right now, only two parameters are exposed for our demonstration.
Future work could involve including an advanced pop-up menu with all the parameters. The
number of these paramters would needed to be extended as the heart model as is extended.

5. Finally, to demonstrate the usability of our system, a pacemaker error was induced and
caught. An algorithm implemented on the pacemaker to correct for a known error was
turned off and the pacemaker was then subjected to testing. By showing our system catches
this error, we demonstrated that our system can be confidently used for future pacemaker
testing.

33 Phase 2 Report



Team #3

8 Nomenclature

Bradycardia an abnormally slow heart rate.
BRAM Block RAM. An FPGA component used for data storage.
CLB Combinational Logic Block. An FPGA component used for constructing logic.
EFSM Extended Finite State Machine. Finite state machines with

arithmetic trigger and state operations.
EGM Electrogram. A display of electric potentials of heart tissue

from internal probes.
Electrophysiology The study of electrical phenomena related to tissue.
ELT Endless-Loop Tachycardia, a form of pacemaker-mediated tachycardia

that is the result of continuous pacing
FPGA Field Programmable Gate Array. A device that allows the prototyping

of digital logic through ’programmable’ hardware.
FSM Finite State Machine. A mathematical abstraction of a system using the

concepts of states and transitions.
HDL Hardware Description Language. A grammar for describing combinational

and sequential logic.
IOB Input/Output Block. An FPGA component used for interfacing.
I/O Input/Output
LUT Look-up Table. A truth table implementation FPGAs use for implementing

arbitrary combinational logic.
Node A cluster of cardiac muscle cells with similar conduction properties.
Op-amp Operational amplifier
Path An abstraction of signal timing delays in the heart.
PMT Pacemaker-Mediated Tachycardia, a form of tachycardia that is

caused by the pacemaker overpacing.
PVC Premature Ventricular Contraction, an “extra” ventricular beat that is natural

in some patients.
RAM Random Access Memory
Simulink Software included in the MATLAB suite used for the modeling and

simulation of dynamic systems.
Stateflow Software included in the MATLAB suite used for the modeling and

simulation of extended finite state machines.
Tachycardia an abnormally fast heart rate.

34 Phase 2 Report



Team #3

9 References

[1] Z. Jiang, M. Pajic, and R. Mangharam. Cyber-physical modeling of implantable cardiac
medical devices. Proceedings of the IEEE, PP(99):1 –16, 2011.

[2] Chloe Taft. CDRH Software Forensics Lab: Applying Rocket Science To Device Analysis.
http://www.medicaldevicestoday.com/2007/10/cdrh-software-f.
html, October 2007.

[3] Food and Drug Administration. Premarket Approval (PMA). http://
www.fda.gov/medicaldevices/deviceregulationandguidance/
howtomarketyourdevice/premarketsubmissions/
premarketapprovalpma/default.htm, September 2010.

[4] Goldman, B.S., E.J. Noble, J.G. Heller, and D. Covvey. The pacemaker challenge. Canadian
Medical Association Journal, 110:28–31, January 1974.

[5] Widmaier, Eric P., Hershel Raff, Kevin T. Strang, and Arthur J. Vander. Vander’s Human
Physiology: the Mechanisms of Body Function. McGraw-Hill Science Engineering, 2007.

[6] Robert M. Keller. Finite-State machines. http://www.cs.hmc.edu/˜keller/
cs60book/12%20Finite-State%20Machines.pdf, September 2001.

[7] Kwang-Ting Cheng and A.S. Krishnakumar. Automatic functional test generation using the
extended finite state machine model. In Design Automation, 1993. 30th Conference on, pages
86 – 91, june 1993.

[8] Teresa Chay. Your Cheatin’ Heart. http://www.psc.edu/science/Chay/Chay.
html.

[9] Denis Noble. Modeling the heart–from genes to cells to the whole organ. Science,
295(5560):1678–1682, 2002.

[10] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet, 2011.

[11] Digilent FPGA boards. http://www.digilentinc.com/Products/Catalog.
cfm?NavPath=2,400&Cat=10&FPGA, November 2011.

[12] Seymour Furman and John D. Fisher. Endless loop tachycardia in an AV universal (DDD)
pacemaker. Pacing and clinical electrophysiology, 5(4):486–489, July 1982.

35 Phase 2 Report



Team #3

10 Bibliography

Chow, Anthony W.C. and Buxton, Alfred E., Implantable Cardiac Pacemakers and Defibrillators:
All You Wanted to Know. Malden, MA: Blackwell, 2006.

Dahms, D.F., ”Implantable Pacemaker Testing Guidance,” 1997,
http://www.fda.gov/downloads/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/UCM081382.pdf

Fletcher, C., ”Verilog: always@ Blocks,” 2008,
http://inst.eecs.berkeley.edu/˜cs150/Documents/Always.pdf.

Fogoros, R.N., Electrophysiologic Testing. Malden, MA: Blackwell, 2006.

36 Phase 2 Report



Team #3

11 Financial Information

11.1 Budget Rationale

We require an FPGA board to implement the virtual heart model. We selected the Terasic Al-
tera DE0-Nano Board. Initially, we thought we would require analog-to-digital converters and
digital-to-analog converters in order to interface with the pacemakers, but in the end, we built an
interfacing circuit instead. This interface circuit was etched onto a printed circuit board for the
final product. Finally, we needed opto-isolator and operational-amplifier integrated circuit chips,
readily available from the Detkin Laboratory at Penn.

11.2 Itemized Budget

Table 5: Itemized budget

Item Vendor Quantity Unit Price Subtotal
FPGA Board Terasic/Altera 1 $100 $100
FTDI Chip Sparkfun 1 $15 $15
Printed Circuit Boards 4PCB 1 $33 $33

Total $148

This project is funded by ESE Senior Design.

37 Phase 2 Report



Team #3

12 Ethical Issues

The goal of our project is to reduce occurrances of dangerous pacemaker failures, which is a
noble goal. However, as with any system, our project has ethical implications for the world. An
inevitable result of widespread use of our system is the shift of liability from manufacturers to our
testing platform. In today’s world, manufacturers pay the hefty monetary price of recovering from
pacemaker recalls and the hefty reputation price of having produced a faulty device. These serious
consequences of recalls serve as an incentive for manufacturers to put extra effort into producing
a robust system. If our system assumes the authoritative role in pacemaker testing, the first-line
incentive to produce robust systems diminishes since liability of pacemaker failures would fall
under the responsibility of the testing system. Such a consequence of our system can be avoided
with firm and graded protocol for testing. Regulators such as the FDA must ensure that standards
are enforced at mulitple levels of device manufacturing. For example, there should be evidence of
implemented safety measures before pacemakers are even subjected to testing with our platform.

Another ethical issue that crops up when shifting the responsibility of safety from manufacturing
to a testing platform is the idea of testing the tester. Our system revolves around ensuring the
safety of pacemakers, but this implies that the system itself is infallable. One step taken to mitigate
this concern is the use of model based development (See Section 3.3.2) to ensure that the desired
behavior of the models is automatically implented from theory all the way down to hardware.
Furthermore, this system is built such that a cardiologist must configure it and then hand these
models to manufactuers. In this way, our system is actually ensuring that pacemakers do not go
out into the market without the input of an expert such as a cardiologist. It is a tool that is inteded
to unify experts from various fields to ensure maximum safety of the produced devices.

One potential concern is that the product may be used with complete disregard to its intention
– that is, it may be used as a stand-alone testing platform without provided heart models from
cardiologists. Explicit guidelines and requirements must be provided with our system to ensure
that manufacturers and regulators are deterred from falsly claiming safety of devices using custom
heart models without input from cardiologists and design engineers. The successful passing of
testing should be accompanied with reports of the specific heart parameters used to test the desired
pacemaker features.

PVS could potentially also have economical implications. The price of pacemakers could increase
if manufacturers must purchase an additional testing system since this would add to the overhead
manufacturing costs. However, as reported in Section 11, our system has a total cost of only
around $150. Pacemakers on the market today cost tens of thousands of dollars. Therefore the
additional cost from our system is comparatively inconsequential. Furthermore, with the potential
of saving millions of dollars in recalls, the savings may be well worth the small additional cost of
this system.

38 Phase 2 Report



Team #3

Appendix 1: Additional Figures

Figure 13: Software Development Process Flowchart

A1–1 Phase 2 Report



Team #3

Fi
gu

re
14

:P
ac

em
ak

er
In

te
rf

ac
e

C
ir

cu
it

Sc
he

m
at

ic

A1–2 Phase 2 Report



Team #3

Figure 15: Pacemaker Interface Circuit Layout

A1–3 Phase 2 Report



Team #3

Appendix 2: Software and Hardware Code

The Pacemaker Verification System contains two large code modules, one being the hardware
description for the FPGA virtual heart model, and the other being the graphical user interface.

A2.1: Virtual Heart Model

The virtual heart model was implemented on a field programmable gate array (FPGA). Since an
FPGA implements hardware, as explained in Section 3.3.1, this code is actually written in Verilog,
a hardware description language (HDL) that describes how the hardware is laid out. There is
HDL for each node and path automaton of the heart model, as well as for the full FPGA build
harness (see Section 4.3). Shown below is the HDL representing one node automaton and one path
automaton. These two pieces of HDL were automatically generated from the models using the
principles of model-based development, as explained in Section 3.3.2.

Node Automaton HDL

/*********************************
Pacemaker Verification System (PVS)

Virtual Heart Model
Node Automaton (Sinoatrial Node)

This HDL implements the node automaton. A similar
block of code exists for each node in the virtual
heart.

Authors:
Sriram Radhakrishnan
Varun Sampath
Shilpa Sarode

Version 1.0
April 15, 2012

**********************************/
‘timescale 1 ns / 1 ns

module NA1_SA
(
clk,
reset,
enb,
inActive,
Trest_def,
Active,
State,
path_timer

);

input clk;
input reset;
input enb;
input inActive;
input [15:0] Trest_def; // uint16
output Active;
output [7:0] State; // uint8
output [15:0] path_timer; // uint16

reg activeMem_out1;
wire activeMem_out1_1;
wire node_aut_out1;
wire [7:0] node_aut_out2; // uint8
wire [15:0] node_aut_out3; // uint16
reg inActiveMem_out1;
wire activeMem_out1_2;
reg [15:0] path_timer_1; // uint16

A2–1 Phase 2 Report



Team #3

assign activeMem_out1_1 = activeMem_out1 | inActive;

node_aut u_node_aut (.clk(clk),
.reset(reset),
.enb(enb),
.inActive(activeMem_out1_1),
.Trest_def(Trest_def), // uint16
.Active(node_aut_out1),
.state(node_aut_out2), // uint8
.path_timer(node_aut_out3) // uint16
);

always @(posedge clk or posedge reset)
begin : activeMem_process
if (reset == 1’b1) begin
activeMem_out1 <= 1’b0;

end
else begin
if (enb) begin
activeMem_out1 <= node_aut_out1;

end
end

end

always @(posedge clk or posedge reset)
begin : inActiveMem_process
if (reset == 1’b1) begin
inActiveMem_out1 <= 1’b0;

end
else begin
if (enb) begin
inActiveMem_out1 <= inActive;

end
end

end

assign activeMem_out1_2 = activeMem_out1 | inActiveMem_out1;

assign Active = activeMem_out1_2;

assign State = node_aut_out2;

always @(posedge clk or posedge reset)
begin : pathMem_process
if (reset == 1’b1) begin
path_timer_1 <= 0;

end
else begin
if (enb) begin
path_timer_1 <= node_aut_out3;

end
end

end

assign path_timer = path_timer_1;

endmodule // NA1_SA

Path Automaton HDL
/*********************************
Pacemaker Verification System (PVS)

Virtual Heart Model
Path Automaton (SA-RV conduction)

This HDL implements the path automaton. There
is a similar code block for each path in the virtual
heart.

Authors:
Sriram Radhakrishnan
Varun Sampath
Shilpa Sarode

A2–2 Phase 2 Report



Team #3

Version 1.0
April 15, 2012

**********************************/
‘timescale 1 ns / 1 ns

module PA2_2to3
(
clk,
reset,
enb,
inActive1,
inActive2,
pathTimerEn,
pathTimerEx,
forw_param,
outActive1,
outActive2,
state

);

input clk;
input reset;
input enb;
input inActive1;
input inActive2;
input [15:0] pathTimerEn; // uint16
input [15:0] pathTimerEx; // uint16
input [15:0] forw_param; // uint16
output outActive1;
output outActive2;
output [7:0] state; // uint8

wire path_aut_out1;
wire path_aut_out2;
wire [7:0] path_aut_out3; // uint8

path_aut_block u_path_aut (.clk(clk),
.reset(reset),
.enb(enb),
.inActive1(inActive1),
.inActive2(inActive2),
.forw_param(forw_param), // uint16
.pathTimerEn(pathTimerEn), // uint16
.pathTimerEx(pathTimerEx), // uint16
.outActive1(path_aut_out1),
.outActive2(path_aut_out2),
.state(path_aut_out3) // uint8
);

assign outActive1 = path_aut_out1;

assign outActive2 = path_aut_out2;

assign state = path_aut_out3;

endmodule // PA2_2to3

A2.2: Graphical User Interface
The graphical user interface was implemented using MATLAB, as explained in Section 4.6. The code shown below handles the real-time plotting functionality of the GUI. This code is called at a
regular interval, and plots the heartbeat and pace signals when received from the FPGA virtual heart.

/*********************************
Pacemaker Verification System (PVS)

MATLAB GUI
Real-time Plotting Callback Function

This code gets called at a defined, regular
interval, and plots the heartbeat and pacing
signals when received from the FPGA virtual
heart.

Authors:
Sriram Radhakrishnan
Varun Sampath
Shilpa Sarode

Version 1.0
April 18, 2012

A2–3 Phase 2 Report



Team #3

**********************************/

function [ ] = draw_new_point(obj, event, axisObj, serialObj,handles, timerObj)
%draw_new_point - Timer callback function that obtains & plots new point
%from serial
% Data froms serialObj consists of a 1-byte header and a 4-byte
% unsigned little endian body that holds a timer value. The header tells
% what event that counter value is being transmitted for.
%
% obj and event parameters are required for timer callbacks and simply
% not used.
%
% Header values:
% 0 - bad value
% 1 - SA node activation and no APace
% 2 - no SA node activation and APace
% 3 - SA node activation and APace
% 4 - RV node activation and no VPace
% 5 - no RV node activation and VPace
% 6 - RV node activation and VPace

global enableBeat;
global HBsound;
global ErrorSound;

persistent old_SA;
persistent old_AP;
persistent old_RV;
persistent old_VP;

persistent pulses;
persistent iterations;

persistent SA_diff;
persistent AP_diff;
persistent RV_diff;
persistent VP_diff;

persistent ecg_plot;
persistent sa_plot;
persistent rv_plot;
persistent a_plot;
persistent v_plot;

global flush;
persistent isRed;
persistent lastWave;
persistent isAlertMode;

%Axis Values
persistent x;
persistent tix;
persistent ecg_sig;
persistent sa_sig;
persistent rv_sig;
persistent apace_sig;
persistent vpace_sig;

persistent last_clock;

if isempty(SA_diff)
SA_diff = 0;

end
if isempty(AP_diff)

AP_diff = 0;
end
if isempty(RV_diff)

RV_diff = 0;
end
if isempty(VP_diff)

VP_diff = 0;
end
if isempty(enableBeat)

enableBeat = 0;
end
if isempty(isRed)

isRed = 0;
end
if isempty(lastWave)

lastWave = 0;
end
if isempty(pulses)

pulses = 0;
end

%% Constants
DEBUG = 1;
NUM_ITER_PER_FLASH = 4;

A2–4 Phase 2 Report



Team #3

%% Position Constants
ylims = [0 15];
apzero = 5.85;
vpzero = 1;
pulselen = 2.5;

if enableBeat
ecgzero = 11.75;

else
ecgzero = 11;

end

%% Build PQRST Wave
beat = 3*ecg(400);
p_per = 0.205;
q_per_start = 0.295;
q_per_end = 0.815;

p = beat(1:round(p_per*length(beat)));
qrst = beat(round(q_per_start*length(beat)):(round(q_per_end*length(beat))));

origp = sgolayfilt(p,0,5);
origqrst = sgolayfilt(qrst,0,5);

p = origp + ecgzero;
qrst = origqrst + ecgzero;

%% Initializations
fpgaclk = 1.500; % clock rate is 1.5kHz
dt = 1/fpgaclk; %cache bucket size
c = clock;
c = c(6)*1000 + c(5)*60*1000 + c(4)*60*60*1000 + c(3)*24*60*60*1000;

cacheSize = 7000; %including extra
plotSize = 5000; %plot area

%get serial value if bytes are availble
if serialObj.BytesAvailable || flush

header = fread(serialObj, 1, ’uint8’);
val = fread(serialObj, 1, ’uint32’);
millisec = val/fpgaclk; %input ms value
serialRead = 1;

else
serialRead = 0;

end

shift = 0;

x = 0:dt:cacheSize*dt-dt;

%% Axis Calculations
if flush

flush = 0;
tix = (val-(plotSize-1):(val+(cacheSize-plotSize)));
ecg_sig = ecgzero*ones(1,cacheSize);
sa_sig = ecgzero*ones(1,cacheSize);
rv_sig = ecgzero*ones(1,cacheSize);
apace_sig = apzero*ones(1,cacheSize);
vpace_sig = vpzero*ones(1,cacheSize);
isAlertMode = 0;
iterations = 0;

hold(axisObj(1), ’off’);

% Initialize plots
try
if enableBeat

ecg_plot = plot(axisObj(1), x(1:plotSize), ecg_sig(1:plotSize),...
’Color’, [0 1 0],’LineWidth’, 1);

else
sa_plot = plot(axisObj(1), x(1:plotSize), sa_sig(1:plotSize),...

’Color’, [256 170 191]/256,’LineWidth’, 3);
hold(axisObj(1), ’on’);
rv_plot = plot(axisObj(1), x(1:plotSize), rv_sig(1:plotSize),...

’Color’, [0 1 0], ’LineWidth’, 3);
end
hold(axisObj(1), ’on’);

a_plot = plot(axisObj(1),x(1:plotSize),apace_sig(1:plotSize), ...
’Color’, ’y’, ’LineWidth’, 3);

v_plot = plot(axisObj(1),x(1:plotSize),vpace_sig(1:plotSize), ...
’Color’, ’c’, ’LineWidth’, 3);

catch err
disp(’failed in plot init’);
flush = 1;

end

set(axisObj(1), ’Color’, ’k’,’YLim’, ylims, ’XGrid’, ’on’, ...
’YTick’, [], ’XTick’, [0:300:dt*plotSize-dt], ...

A2–5 Phase 2 Report



Team #3

’XColor’, [0.7 0.7 0.7]);

xlabel(axisObj(1), ’Time (ms)’);

else

% Compute Shift Amount
shift = ceil((c - last_clock)*1.5);

tix = [tix((shift+1):end) (tix(end)+1):(tix(end)+shift)];
ecg_sig = [ecg_sig(shift+1:cacheSize) ecgzero*ones(1,shift)];
sa_sig = [sa_sig(shift+1:cacheSize) ecgzero*ones(1,shift)];
rv_sig = [rv_sig(shift+1:cacheSize) ecgzero*ones(1,shift)];
apace_sig = [apace_sig(shift+1:cacheSize) apzero*ones(1,shift)];
vpace_sig = [vpace_sig(shift+1:cacheSize) vpzero*ones(1,shift)];

end

last_clock = c;

if serialRead

%% SA pulse handling
if header == 1 || header == 3

SA_diff = val - old_SA;
old_SA = val;

if DEBUG
print_string = sprintf(’SA pulse at %d, diff: %d and shift: %d\n’, val, SA_diff, shift);
disp(print_string);

end

try
sa_sig(tix == val) = ecgzero + pulselen;

if enableBeat
ecg_sig(find(tix==val):find(tix==val)+length(p)-1) = ...

ecg_sig(find(tix==val):find(tix==val)+length(p)-1) + origp;

end
catch err

disp(’failed in SA’);
flush = 1;

end
end

%% AP handling - plot orange lines on plot 2
if header == 2 || header == 3

AP_diff = val - old_AP;
old_AP = val;

if DEBUG
print_string = sprintf(’APace at %d, diff: %d\n’, val, AP_diff);
disp(print_string);

end

try
apace_sig(tix == val) = apzero + pulselen;
catch err

disp(’failed in AP’);
flush = 1;

end
end

%% RV pulse handling - plot blue lines on plot 3
if header == 4 || header == 6

RV_diff = val - old_RV;
old_RV = val;

if DEBUG
print_string = sprintf(’RV pulse at %d, diff: %d, shift: %d\n’, val, RV_diff, shift);
disp(print_string);

end

try
rv_sig(tix == val) = ecgzero + pulselen;

if enableBeat
ecg_sig(find(tix==val):find(tix==val)+length(qrst)-1) = ...

ecg_sig(find(tix==val):find(tix==val)+length(qrst)-1) + origqrst;
end
catch err

disp(’failed in rv plot’);
flush = 1;

end

% border color routine
if pulses >= 4

BPM = round(60000*fpgaclk/RV_diff);
set(handles.BPM, ’String’, num2str(BPM));
if (BPM <= handles.cThresh(1) || BPM >= handles.cThresh(2))

isAlertMode = 1;

A2–6 Phase 2 Report



Team #3

else
isAlertMode = 0;
wavplay(HBsound, 44100, ’async’);

end
end

end

%% VP handling - plot green lines on plot 4
if header == 5 || header == 6

VP_diff = val - old_VP;
old_VP = val;

if DEBUG
print_string = sprintf(’VPace at %d, diff: %d\n’, val, VP_diff);
disp(print_string);

end
try
vpace_sig(tix == val) = vpzero + pulselen;
catch err

disp(’error in vp plot’);
flush = 1;

end
end

if header > 6 || header == 0
print_string = sprintf(’Header should not be %d. val: %d\n’,header, val);
disp(print_string);
return;

end

pulses = pulses + 1; %increment for each pulse

end

%% Border Color Alert
if isAlertMode

iterations = iterations + 1;
if (iterations >= NUM_ITER_PER_FLASH)

if ˜isRed
set(handles.figure1,’Color’,[216 41 0]./256);
isRed = 1;

else
set(handles.figure1,’Color’,[11 131 199]./256);
isRed = 0;

end
wavplay(ErrorSound,44100,’async’);
wavplay(HBsound,44100,’async’);
iterations = 0;

end
else

set(handles.figure1,’Color’,[11 131 199]./256);
end

try
if enableBeat

set(ecg_plot,’YData’,ecg_sig,’XData’,x);
else

set(sa_plot,’YData’,sa_sig,’XData’,x);
set(rv_plot,’YData’,rv_sig,’XData’,x);

end

set(a_plot,’YData’,apace_sig,’XData’,x);
set(v_plot,’YData’,vpace_sig,’XData’,x);
catch err

disp(’failed in X/Y data set’);
flush = 1;

end

xlim(axisObj(1),[x(1) x(plotSize)]);
drawnow;
end

A2–7 Phase 2 Report


